ﻻ يوجد ملخص باللغة العربية
A Kitaev-Heisenberg-J2-J3 model is proposed to describe the Mott-insulating layered iridates A2IrO3 (A=Na,Li). The model is a combination of the Kitaev honeycomb model and the Heisenberg model with all three nearest neighbor couplings J1, J2 and J3. A rich phase diagram is obtained at the classical level, including the experimentally suggested zigzag ordered phase; as well as the stripy phase, which extends from the Kitaev-Heisenberg limit to the J1-J2-J3 one. Combining the experimentally observed spin order with the optimal fitting to the uniform magnetic susceptibility data gives an estimate of possible parameter values, which in turn reaffirms the necessity of including both the Kitaev and farther neighbor couplings.
We use the coupled cluster method for infinite chains complemented by exact diagonalization of finite periodic chains to discuss the influence of a third-neighbor exchange J3 on the ground state of the spin-1/2 Heisenberg chain with ferromagnetic nea
The Kitaev-Heisenberg (KH) model has been proposed to capture magnetic interactions in iridate Mott insulators on the honeycomb lattice. We show that analogous interactions arise in many other geometries built from edge-sharing IrO_6 octahedra, inclu
The two dimensional Heisenberg antiferromagnet on the square lattice with nearest (J1) and next-nearest (J2) neighbor couplings is investigated in the strong frustration regime (J2/J1>1/2). A new effective field theory describing the long wavelength
We perform an extensive density matrix renormalization group (DMRG) study of the ground-state phase diagram of the spin-1/2 J_1-J_2 Heisenberg model on the kagome lattice. We focus on the region of the phase diagram around the kagome Heisenberg antif
With the advancement in synthesizing and analyzing Kitaev materials, the Kitaev-Heisenberg model on the honeycomb lattice has attracted a lot of attention in the last few years. Several variations, which include additional anisotropic interactions as