ترغب بنشر مسار تعليمي؟ اضغط هنا

Subtraction of the spurious translational mode from the RPA response function

32   0   0.0 ( 0 )
 نشر من قبل Kazuhito Mizuyama
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

It is well known that within self-consistent Random Phase Approximation (RPA) on top of Hartree-Fock (HF), the translational symmetry should be restored. Due to approximations at the level of the practical implementation, this restoration may be only partial. As a result, one has spurious contributions in the physical quantities that are extracted from RPA. While there are several recipes in the literature to overcome this drawback in order to produce transition densites or strength functions that are free from spurious contamination, there is no formalism associated with the full RPA response function. We present such formalism in this paper. Our goal is to avoid spurious contamination when the response function is used in many-body frameworks like the particle-vibration coupling theory.

قيم البحث

اقرأ أيضاً

We present a consistent emph{ab initio} computation of the longitudinal response function $R_L$ in $^{40}$Ca using the coupled-cluster and Lorentz integral transform methods starting from chiral nucleon-nucleon and three-nucleon interactions. We vali date our approach by comparing our results for $R_L$ in $^4$He and the Coulomb sum rule in $^{40}$Ca against experimental data and other calculations. For $R_L$ in $^{40}$Ca we obtain a very good agreement with experiment in the quasi-elastic peak up to intermediate momentum transfers, and we find that final state interactions are essential for an accurate description of the data. This work presents a milestone towards emph{ab initio} computations of neutrino-nucleus cross sections relevant for experimental long-baseline neutrino programs.
121 - F. Raimondi , C. Barbieri 2018
Microscopic calculations of the electromagnetic response of medium-mass nuclei are now feasible thanks to the availability of realistic nuclear interactions with accurate saturation and spectroscopic properties, and the development of large-scale com puting methods for many-body physics. The purpose is to compute isovector dipole electromagnetic (E1) response and related quantities, i.e. integrated dipole cross section and polarizability, and compare with data from photoabsorption and Coulomb excitation experiments. The single-particle propagator is obtained by solving the Dyson equation, where the self-energy includes correlations non-perturbatively through the Algebraic Diagrammatic Construction (ADC) method. The particle-hole ($ph$) polarization propagator is treated in the Dressed Random Phase Approximation (DRPA), based on an effective correlated propagator that includes some $2p2h$ effects but keeps the same computation scaling as the standard Hartree-Fock propagator. The E1 responses for $^{14,16,22,24}$O, $^{36,40,48,52,54,70}$Ca and $^{68}$Ni have been computed: the presence of a soft dipole mode of excitation for neutron-rich nuclei is found, and there is a fair reproduction of the low-energy part of the experimental excitation spectrum. This is reflected in a good agreement with the empirical dipole polarizability values. For a realistic interaction with an accurate reproduction of masses and radii up to medium-mass nuclei, the Self-Consistent Greens Function method provides a good description of the E1 response, especially in the part of the excitation spectrum below the Giant Dipole Resonance. The dipole polarizability is largely independent from the strategy of mapping the dressed propagator to a simplified one that is computationally manageable
We develop a scheme to exactly evaluate the correlation energy in the random-phase approximation, based on linear response theory. It is demonstrated that our formula is completely equivalent to a contour integral representation recently proposed by Donau et al. being numerically more efficient for realistic calculations. Numerical examples are presented for pairing correlations in rapidly rotating nuclei.
147 - D. Pena Arteaga , P. Ring 2009
Covariant density functional theory, in the framework of self-consistent Relativistic Mean Field (RMF) and Relativistic Random Phase approximation (RPA), is for the first time applied to axially deformed nuclei. The fully self-consistent RMF+RRPA equ ations are posed for the case of axial symmetry and non-linear energy functionals, and solved with the help of a new parallel code. Formal properties of RPA theory are studied and special care is taken in order to validate the proper decoupling of spurious modes and their influence on the physical response. Sample applications to the magnetic and electric dipole transitions in $^{20}$Ne are presented and analyzed.
Recent J = 0 (para) baryonium interpretations of the BES narrow resonance data near the e^-e^+ -> p anti-p threshold suggests the existance of ortho baryonium. To assist future searches we study J = 1 states, especially vector meson leptonic decays, and report RPA calculations for both light and heavy mesons using a Coulomb-gauge QCD-inspired model. Since the phi(1880) is the only missing model state, other discovered J = 1 particles in this region are ortho baryonium candidates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا