ﻻ يوجد ملخص باللغة العربية
We discuss gauge symmetry breaking in a general framework of gauge theories on an interval. We first derive a possible set of boundary conditions for a scalar field, which are compatible with several consistency requirements. It is shown that with these boundary conditions the scalar field can acquire a nontrivial vacuum expectation value even if the scalar mass square is positive. Any nonvanishing vacuum expectation value cannot be a constant but, in general, depends on the extra dimensional coordinate of the interval. The phase diagram of broken/unbroken gauge symmetry possesses a rich structure in the parameter space of the length of the interval, the scalar mass and the boundary conditions. We also discuss 4d chiral fermions and fermion mass hierarchies in our gauge symmetry breaking scenario.
The conception of the conformal phase transiton (CPT), which is relevant for the description of non-perturbative dynamics in gauge theories, is introduced and elaborated. The main features of such a phase transition are established. In particular, it
We perform a careful study of the infrared sector of massless non-abelian gauge theories in four-dimensional Minkowski spacetime using the covariant phase space formalism, taking into account the boundary contributions arising from the gauge sector o
We perform a comprehensive study of on-shell recursion relations for Born amplitudes in spontaneously broken gauge theories and identify the minimal shifts required to construct amplitudes with a given particle content and spin quantum numbers. We sh
We compute the ${cal N}=2$ supersymmetric partition function of a gauge theory on a four-dimensional compact toric manifold via equivariant localization. The result is given by a piecewise constant function of the Kahler form with jumps along the wal
The previously developed renormalizable perturbative 1/N-expansion in higher dimensional scalar field theories is extended to gauge theories with fermions. It is based on the $1/N_f$-expansion and results in a logarithmically divergent perturbation t