ﻻ يوجد ملخص باللغة العربية
We report ac susceptibility and high-frequency electron spin resonance (ESR) measurements on the geometrically frustrated compound Ba$_3$NbFe$_3$Si$_2$O$_{14}$ with the N{e}el temperature $T_N=27 K$. An unusually large frequency-dependence of ac susceptibility in the temperature range of 20 - 100 K reveals a spin-glass-like behavior, signalling the presence of frustration related slow magnetic fluctuations. ESR experiments show a multi-step magnetic and spin chirality ordering process. For temperatures above 30 K, the weak temperature dependence of the ESR linewidth $Delta H_{pp}propto T^{-p}$ with $p=0.8$ evidences the development of short-range correlated spin clusters. The critical broadening with $p =1.8$, persisting down to 14 K, indicates the coexistence of the short-range ordered spin clusters within a helically ordered state. Below 9.5 K, the anomalously large decrease of the linewidth reveals the stabilization of a long-range ordered state with one chirality.
The spin wave excitations emerging from the chiral helically modulated 120$^{circ}$ magnetic order in a langasite Ba$_3$NbFe$_3$Si$_2$O$_{14}$ enantiopure crystal were investigated by unpolarized and polarized inelastic neutron scattering. A dynamica
We have determined the terahertz spectrum of the chiral langasite Ba$_3$NbFe$_3$Si$_2$O$_{14}$ by means of synchrotron-radiation measurements. Two excitations are revealed that are shown to have a different nature. The first one, purely magnetic, is
The chiral langasite Ba$_3$NbFe$_3$Si$_2$O$_{14}$ is a multiferroic compound. While its magnetic order below T$_N$=27 K is now well characterised, its polar order is still controversial. We thus looked at the phonon spectrum and its temperature depen
LiZn$_2$Mo$_3$O$_8$ has been proposed to contain $S~=~1/2$ Mo$_3$O$_{13}$ magnetic clusters arranged on a triangular lattice with antiferromagnetic nearest-neighbor interactions. Here, microwave and terahertz electron spin resonance (ESR), $^7$Li nuc
Chiral multiferroic langasites have attracted attention due to their doubly-chiral magnetic ground state within an enantiomorphic crystal. We report on a detailed resonant soft X-ray diffraction study of the multiferroic Ba$_3$TaFe$_3$Si$_2$O$_{14}$