ترغب بنشر مسار تعليمي؟ اضغط هنا

A universal bound on N-point correlations from inflation

31   0   0.0 ( 0 )
 نشر من قبل Kendrick Smith
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Models of inflation in which non-Gaussianity is generated outside the horizon, such as curvaton models, generate distinctive higher-order correlation functions in the CMB and other cosmological observables. Testing for violation of the Suyama-Yamaguchi inequality tauNL >= (6/5 fNL)^2, where fNL and tauNL denote the amplitude of the three-point and four-point functions in certain limits, has been proposed as a way to distinguish qualitative classes of models. This inequality has been proved for a wide range of models, but only weak

قيم البحث

اقرأ أيضاً

138 - Keisuke Inomata 2021
We put the upper bound on the gravitational waves (GWs) induced by the scalar-field fluctuations during the inflation. In particular, we focus on the case where the scalar fluctuations get amplified within some subhorizon scales by some mechanism dur ing the inflation. Since the energy conservation law leads to the upper bound on the energy density of the scalar fluctuations, the amplitudes of the scalar fluctuations are constrained and therefore the induced GWs are also. Taking into account this, we derive the upper bound on the induced GWs. As a result, we find that the GW power spectrum must be $mathcal P_h lesssim mathcal O(epsilon^2 (k/k_*)^2)$, where $epsilon$ is the slow-roll parameter and $k_*$ is the peak scale of the scalar-field fluctuations.
Higher-order, non-Gaussian aspects of the large-scale structure carry valuable information on structure formation and cosmology, which is complementary to second-order statistics. In this work we measure second- and third-order weak-lensing aperture- mass moments from CFHTLenS and combine those with CMB anisotropy probes. The third moment is measured with a significance of $2sigma$. The combined constraint on $Sigma_8 = sigma_8 (Omega_{rm m}/0.27)^alpha$ is improved by 10%, in comparison to the second-order only, and the allowed ranges for $Omega_{rm m}$ and $sigma_8$ are substantially reduced. Including general triangles of the lensing bispectrum yields tighter constraints compared to probing mainly equilateral triangles. Second- and third-order CFHTLenS lensing measurements improve Planck CMB constraints on $Omega_{rm m}$ and $sigma_8$ by 26% for flat $Lambda$CDM. For a model with free curvature, the joint CFHTLenS-Planck result is $Omega_{rm m} = 0.28 pm 0.02$ (68% confidence), which is an improvement of 43% compared to Planck alone. We test how our results are potentially subject to three astrophysical sources of contamination: source-lens clustering, the intrinsic alignment of galaxy shapes, and baryonic effects. We explore future limitations of the cosmological use of third-order weak lensing, such as the nonlinear model and the Gaussianity of the likelihood function.
In this article, using the principles of Random Matrix Theory (RMT), we give a measure of quantum chaos by quantifying Spectral From Factor (SFF) appearing from the computation of two-point Out of Time Order Correlation function (OTOC) expressed in t erms of square of the commutator bracket of quantum operators which are separated in time. We also provide a strict model independent bound on the measure of quantum chaos, $-1/N(1-1/pi)leq {bf SFF}leq 0$ and $0leq {bf SFF}leq 1/pi N$, valid for thermal systems with a large and small number of degrees of freedom respectively. Based on the appropriate physical arguments we give a precise mathematical derivation to establish this alternative strict bound of quantum chaos.
52 - Tie-Jun Gao , Xiu-Yi Yang 2021
We investigate the possibility to induce double peaks of gravitational wave(GW) spectrum from primordial scalar perturbations in inflationary models with three inflection points.Where the inflection points can be generated from a polynomial potential or generated from Higgs like $phi^4$ potential with the running of quartic coupling.In such models, the inflection point at large scales predicts the scalar spectral index and tensor-to-scalar ratio consistent with current CMB constraints, and the other two inflection points generate two large peaks in the scalar power spectrum at small scales, which can induce GWs with double peaks energy spectrum. We find that for some choices parameters the double peaks spectrum can be detected by future GW detectors, and one of the peaks around $fsimeq10^{-9}sim10^{-8}$Hz can also explain the recent NANOGrav signal. Moreover, the peaks of power spectrum allow for the generation of primordial black holes, which account for a significant fraction of dark matter.
We propose a novel mechanism for enhancing the primordial gravitational waves without significantly affecting the curvature perturbations produced during inflation. This is achieved due to non-linear sourcing of resonantly amplified scalar field fluc tuations. Our result is an explicit scale-dependent counter-example of the famous Lyth bound, which opens up a promising perspective of producing detectable inflationary tensor modes with low-scale inflation and a sub-Planckian field excursion. We explicitly demonstrate the testability of our mechanism with upcoming Cosmic Microwave Background B-mode observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا