ترغب بنشر مسار تعليمي؟ اضغط هنا

Ag-coverage-dependent symmetry of the electronic states of the Pt(111)-Ag-Bi interface: The ARPES view of a structural transition

91   0   0.0 ( 0 )
 نشر من قبل Emmanouil Frantzeskakis
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We studied by angle-resolved photoelectron spectroscopy the strain-related structural transition from a pseudomorphic monolayer (ML) to a striped incommensurate phase in an Ag thin film grown on Pt(111). We exploited the surfactant properties of Bi to grow ordered Pt(111)-xMLAg-Bi trilayers with 0 < x < 5 ML, and monitored the dispersion of the Bi-derived interface states to probe the structure of the underlying Ag film. We find that their symmetry changes from threefold to sixfold and back to threefold in the Ag coverage range studied. Together with previous scanning tunneling microscopy and photoelectron diffraction data, these results provide a consistent microscopic description of the coverage-dependent structural transition.



قيم البحث

اقرأ أيضاً

The evolution of titanyl-phthalocyanine (TiOPc) thin films on Ag(111) has been investigated using IRAS, SPA-LEED and STM. In the (sub)monolayer regime various phases are observed that can be assigned to a 2D gas, a commensurate and a point-on-line ph ase. In all three phases the non-planar TiOPc molecule is adsorbed on Ag(111) in an oxygen-up configuration with the molecular pi-conjugated backbone oriented parallel to the surface. The commensurate phase reveals a high packing density, containing two molecules at inequivalent adsorption sites within the unit cell. Both molecules assume different azimuthal orientations which is ascribed to preferred sites and azimuthal orientations with respect to the Ag(111) substrate and, to a lesser extent, to a minimization of repulsive Pauli interactions between adjacent molecules at short distances. At full saturation of the monolayer the latter interaction becomes dominant and the commensurate long range order is lost. DFT calculations have been used to study different adsorption geometries of TiOPc on Ag(111). The most stable configurations among those with pointing up oxygen atoms (bridge+, bridgex, topx) seem to correspond to those identified experimentally. The calculated dependence of the electronic structure and molecular dipole on the adsorption site and configuration is found to be rather small.
127 - A. Sperl , J. Kroeger , N. Neel 2007
Size-selected silver clusters on Ag(111) were fabricated with the tip of a scanning tunneling microscope. Unoccupied electron resonances give rise to image contrast and spectral features which shift toward the Fermi level with increasing cluster size . Linear assemblies exhibit higher resonance energies than equally sized compact assemblies. Density functional theory calculations reproduce the observed energies and enable an assignment of the resonances to hybridized atomic 5s and 5p orbitals with silver substrate states.
We investigate the molecular acceptors 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA), 2,3,5,6-tetra uoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), and 4,5,9,10-pyrenetetraone (PYTON) on Ag(111) using densityfunctional theory. For two gr oups of the HSE(alpha, omega) family of exchange-correlation functionals (omega = 0 and omega = 0.2AA) we study the isolated components as well as the combined systems as a function of the amount of exact-exchange (alpha). We find that hybrid functionals favour electron transfer to the adsorbate. Comparing to experimental work-function data, we report for (alpha) ca. 0.25 a notable but small improvement over (semi)local functionals for the interface dipole. Although Kohn-Sham eigenvalues are only approximate representations of ionization energies, incidentally, at this value also the density of states agrees well with the photoelectron spectra. However, increasing (alpha) to values for which the energy of the lowest unoccupied molecular orbital matches the experimental electron affinity in the gas phase worsens both the interface dipole and the density of states. Our results imply that semi-local DFT calculations may often be adequate for conjugated organic molecules on metal surfaces and that the much more computationally demanding hybrid functionals yield only small improvements.
The first principles density functional theory (DFT) is applied to study effects of molecular adsorption on optical losses of silver (111) surface. The ground states of the systems including water, methanol, and ethanol molecules adsorbed on Ag (111) surface were obtained by the total energy minimization method within the local density approximation (LDA). Optical functions were calculated within the Random Phase Approximation (RPA) approach. Contribution of the surface states to optical losses was studied by calculations of the dielectric function of bare Ag (111) surface. Substantial modifications of the real and imaginary parts of the dielectric functions spectra in the near infrared and visible spectral regions, caused by surface states and molecular adsorption, were obtained. The results are discussed in comparison with available experimental data.
Angle-resolved photoemission spectroscopy and Auger electron spectroscopy have been applied to study the intercalation process of silver underneath a monolayer of graphite (MG) on Ni(111). The room-temperature deposition of silver on top of MG/Ni(111 ) system leads to the islands-like growth of Ag on top of the MG. Annealing of the as-deposited system at temperature of 350-450 C results in the intercalation of about 1-2 ML of Ag underneath MG on Ni(111) independently of the thickness of pre-deposited Ag film (3-100 A). The intercalation of Ag is followed by a shift of the graphite-derived valence band states towards energies which are slightly larger than ones characteristic for pristine graphite. This observation is understood in terms of a weakening of chemical bonding between the MG and the substrate in the MG/Ag/Ni(111) system with a small MG/Ni(111) covalent contribution to this interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا