ترغب بنشر مسار تعليمي؟ اضغط هنا

20 T dipoles and Bi-2212: the path to LHC energy upgrade

90   0   0.0 ( 0 )
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Increasing the energy of the LHC would require a ring of sim20 T magnets using the superconductors Nb3Sn and Bi-2212/Ag. The technology for Bi-2212/Ag wire, cable, and coil has advanced significantly but is still far short of the performance needed for such magnets. New technol-ogy for both wire and cable is under development, which if successful would yield the needed performance.

قيم البحث

اقرأ أيضاً

91 - R. Ainsworth , J. Dey , J. Eldred 2021
The completion of the PIP-II project and its superconducting linear accelerator will provide up to 1.2 MW of beam power to the LBNF/DUNE facility for neutrino physics. It will also be able to produce high-power beams directly from the linac that can be used for lower-energy particle physics experiments as well, such as directing beam toward the Muon Campus at Fermilab for example. Any further significant upgrade of the beam power to DUNE, however, will be impeded by the limitations of the present Booster synchrotron at the facility. To increase the power to DUNE by a factor of two would require a new accelerator arrangement to feed the Main Injector that does not include the Booster. In what follows, a path toward upgrading the Fermilab accelerator complex to bring the beam power for DUNE to 2.4 MW is presented, using a new rapid-cycling synchrotron plus an energy upgrade to the PIP-II linac. The path includes the ability to instigate a new lower-energy, very high-power beam delivery system for experiments that can address much of the science program presented by the Booster Replacement Science Working Group. It also allows for the future possibility to go beyond 2.4 MW up to roughly 4 MW from the Main Injector.
The demanding beam performance requirements of the High Luminosity (HL-) LHC project translate into a set of requirements and upgrade paths for the LHC injector complex. In this paper the performance requirements for the SPS and the known limitations are reviewed in the light of the 2012 operational experience. The various SPS upgrades in progress and still under consideration are described, in addition to the machine studies and simulations performed in 2012. The expected machine performance reach is estimated on the basis of the present knowledge, and the remaining decisions that still need to be made concerning upgrade options are detailed.
We report measurements of AC susceptibility and hence the in-plane London penetration depth on the same samples of Bi:2212 and Bi(Y):2212 for many values of the planar hole concentration/CuO2 unit (p). These support the scenario in which the pseudoga p weakens the superconducting response only for p less than approximately 0.19.
240 - G. Kirby , B. Auchmann , M. Bajko 2014
MQXC is a Nb-Ti quadrupole designed to meet the accelerator quality requirements needed for the phase-1 LHC upgrade, now superseded by the high luminosity upgrade foreseen in 2021. The 2-m-long model magnet was tested at room temperature and 1.9 K. T he technology developed for this magnet is relevant for other magnets currently under development for the high-luminosity upgrade, namely D1 (at KEK) and the large aperture twin quadrupole Q4 (at CEA). In this paper we present MQXC test results, some of the specialized heat extraction features, spot heaters, temperature sensor mounting and voltage tap development for the special open cable insulation. We look at some problem solving with noisy signals, give an overview of electrical testing, look at how we calculate the coil resistance during at quench and show that the heaters are not working We describe the quench signals and its timing, the development of the quench heaters and give an explanation of an Excel quench calculation and its comparison including the good agreement with the MQXC test results. We propose an improvement to the magnet circuit design to reduce voltage to ground values by factor 2. The program is then used to predict quench Hot-Spot and Voltages values for the D1 dipole and the Q4 quadrupole.
85 - C. M. Bhat 2015
Over the past decade, Fermilab has focused efforts on the intensity frontier physics and is committed to increase the average beam power delivered to the neutrino and muon programs substantially. Many upgrades to the existing injector accelerators, n amely, the current 400 MeV LINAC and the Booster, are in progress under the Proton Improvement Plan (PIP). Proton Improvement Plan-II (PIP-II) proposes to replace the existing 400 MeV LINAC by a new 800 MeV LINAC, as an injector to the Booster which will increase Booster output power by nearly a factor of two from the PIP design value by the end of its completion. In any case, the Fermilab Booster is going to play a very significant role for nearly next two decades. In this context, I have developed and investigated a new beam injection scheme called early injection scheme (EIS) for the Booster with the goal to significantly increase the beam intensity output from the Booster thereby increasing the beam power to the HEP experiments even before PIP-II era. The scheme, if implemented, will also help improve the slip-stacking efficiency in the MI/RR. Here I present results from recent simulations, beam studies, current status and future plans for the new scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا