ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonequilibrium Quasiparticle Relaxation Dynamics in Single Crystals of Hole and Electron doped BaFe$_2$As$_2$

350   0   0.0 ( 0 )
 نشر من قبل Darius Torchinsky
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the nonequilibrium quasiparticle dynamics in BaFe$_2$As$_2$ on both the hole doped (Ba$_{1-x}$K$_x$Fe$_2$As$_2$) and electron doped (BaFe$_{2-y}$Co$_y$As$_2$) sides of the phase diagram using ultrafast pump-probe spectroscopy. Below $T_c$, measurements conducted at low photoinjected quasiparticle densities in the optimally and overdoped Ba$_{1-x}$K$_x$Fe$_2$As$_2$ samples reveal two distinct relaxation processes: a fast component whose decay rate increases linearly with excitation density and a slow component with an excitation density independent decay rate. We argue that these two processes reflect the recombination of quasiparticles in the two hole bands through intraband and interband processes. We also find that the thermal recombination rate of quasiparticles increases quadratically with temperature in these samples. The temperature and excitation density dependence of the decays indicates fully gapped hole bands and nodal or very anisotropic electron bands. At higher excitation densities and lower hole dopings, the dependence of the dynamics on quasiparticle density disappears as the data are more readily understood in terms of a model which accounts for the quasiequilibrium temperature attained by the sample. In the BaFe$_{2-y}$Co$_y$As$_2$ samples, dependence of the recombination rate on quasiparticle density at low dopings (i.e., $y=0.12$) is suppressed upon submergence of the inner hole band and quasiparticle relaxation occurs in a slow, density independent manner.



قيم البحث

اقرأ أيضاً

161 - Gang Xu , Haijun Zhang , Xi Dai 2008
We show, from first-principles calculations, that the hole-doped side of FeAs-based compounds is different from its electron-doped counterparts. The electron side is characterized as Fermi surface nesting, and SDW-to-NM quantum critical point (QCP) i s realized by doping. For the hole-doped side, on the other hand, orbital-selective partial orbital ordering develops together with checkboard antiferromagnetic (AF) ordering without lattice distortion. A unique SDW-to-AF QCP is achieved, and $J_2$=$J_1/2$ criteria (in the approximate $J_1&J_2$ model) is satisfied. The observed superconductivity is located in the vicinity of QCP for both sides.
Among numerous hypotheses, recently proposed to explain superconductivity in iron-based superconductors [1-9], many consider Fermi surface (FS) nesting [2, 4, 8, 10] and dimensionality [4, 9] as important contributors. Precise determination of the el ectronic spectrum and its modification by superconductivity, crucial for further theoretical advance, were hindered by a rich structure of the FS [11-17]. Here, using the angle-resolved photoemission spectroscopy (ARPES) with resolution of all three components of electron momentum and electronic states symmetry, we disentangle the electronic structure of hole-doped BaFe2As2, and show that nesting and dimensionality of FS sheets have no immediate relation to the superconducting pairing. Alternatively a clear correlation between the orbital character of the electronic states and their propensity to superconductivity is observed: the magnitude of the superconducting gap maximizes at 10.5 meV exclusively for iron 3dxz;yz orbitals, while for others drops to 3.5 meV. Presented results reveal similarities of electronic response to superconducting and magneto-structural transitions [18, 19], implying that relation between these two phases is more intimate than just competition for FS, and demonstrate importance of orbital physics in iron superconductors.
Inelastic neutron scattering measurements on Ba(Fe$_{0.963}$Ni$_{0.037}$)$_2$As$_2$ manifest a neutron spin resonance in the superconducting state with anisotropic dispersion within the Fe layer. Whereas the resonance is sharply peaked at Q$_{AFM}$ a long the orthorhombic a axis, the resonance disperses upwards away from Q$_{AFM}$ along the b axis. In contrast to the downward dispersing resonance and hour-glass shape of the spin excitations in superconducting cuprates, the resonance in electron-doped BaFe$_2$As$_2$ compounds possesses a magnon-like upwards dispersion.
Magnetic flux structure on the surface of EuFe$_2$(As$rm_{1-x}$P$rm_x$)$_2$ single crystals with nearly optimal phosphorus doping levels $x=0.20$, and $x=0.21$ is studied by low-temperature magnetic force microscopy and decoration with ferromagnetic nanoparticles. The studies are performed in a broad temperature range. It is shown that the single crystal with $x=0.21$ in the temperature range between the critical temperatures $T_{rm SC}=22$ K and $T_{rm C}=17.7$ K of the superconducting and ferromagnetic phase transitions, respectively, has the vortex structure of a frozen magnetic flux, typical for type-II superconductors. The magnetic domain structure is observed in the superconducting state below $T_{rm C}$. The nature of this structure is discussed.
We report on a thorough optical investigation over a broad spectral range and as a function of temperature of the charge dynamics in Ba(Co$_x$Fe$_{1-x}$)$_2$As$_2$ compounds for Co-doping ranging between 0 and 18%. For the parent compound as well as for $x$=0.025 we observe the opening of a pseudogap, due to the spin-density-wave phase transition and inducing a reshuffling of spectral weight from low to high frequencies. For compounds with 0.051$le x le$ 0.11 we detect the superconducting gap, while at $x$=0.18 the material stays metallic at all temperatures. We describe the effective metallic contribution to the optical conductivity with two Drude terms, representing the combination of a coherent and incoherent component, and extract the respective scattering rates. We establish that the $dc$ transport properties in the normal phase are dominated by the coherent Drude term for 0$le x le$0.051 and by the incoherent one for 0.061$le x le$0.18, respectively. Finally through spectral weight arguments, we give clear-cut evidence for moderate electronic correlations for 0$le x le$0.061, which then crossover to values appropriate for a regime of weak interacting and nearly-free electron metals for $xge$0.11.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا