ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Representations by Maximizing Compression

110   0   0.0 ( 0 )
 نشر من قبل Karol Gregor
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We give an algorithm that learns a representation of data through compression. The algorithm 1) predicts bits sequentially from those previously seen and 2) has a structure and a number of computations similar to an autoencoder. The likelihood under the model can be calculated exactly, and arithmetic coding can be used directly for compression. When training on digits the algorithm learns filters similar to those of restricted boltzman machines and denoising autoencoders. Independent samples can be drawn from the model by a single sweep through the pixels. The algorithm has a good compression performance when compared to other methods that work under random ordering of pixels.



قيم البحث

اقرأ أيضاً

Recent literature has shown that features obtained from supervised training of CNNs may over-emphasize texture rather than encoding high-level information. In self-supervised learning in particular, texture as a low-level cue may provide shortcuts th at prevent the network from learning higher level representations. To address these problems we propose to use classic methods based on anisotropic diffusion to augment training using images with suppressed texture. This simple method helps retain important edge information and suppress texture at the same time. We empirically show that our method achieves state-of-the-art results on object detection and image classification with eight diverse datasets in either supervised or self-supervised learning tasks such as MoCoV2 and Jigsaw. Our method is particularly effective for transfer learning tasks and we observed improved performance on five standard transfer learning datasets. The large improvements (up to 11.49%) on the Sketch-ImageNet dataset, DTD dataset and additional visual analyses with saliency maps suggest that our approach helps in learning better representations that better transfer.
Self-supervised learning aims to learn good representations with unlabeled data. Recent works have shown that larger models benefit more from self-supervised learning than smaller models. As a result, the gap between supervised and self-supervised le arning has been greatly reduced for larger models. In this work, instead of designing a new pseudo task for self-supervised learning, we develop a model compression method to compress an already learned, deep self-supervised model (teacher) to a smaller one (student). We train the student model so that it mimics the relative similarity between the data points in the teachers embedding space. For AlexNet, our method outperforms all previous methods including the fully supervised model on ImageNet linear evaluation (59.0% compared to 56.5%) and on nearest neighbor evaluation (50.7% compared to 41.4%). To the best of our knowledge, this is the first time a self-supervised AlexNet has outperformed supervised one on ImageNet classification. Our code is available here: https://github.com/UMBCvision/CompRess
We leverage the powerful lossy image compression algorithm BPG to build a lossless image compression system. Specifically, the original image is first decomposed into the lossy reconstruction obtained after compressing it with BPG and the correspondi ng residual. We then model the distribution of the residual with a convolutional neural network-based probabilistic model that is conditioned on the BPG reconstruction, and combine it with entropy coding to losslessly encode the residual. Finally, the image is stored using the concatenation of the bitstreams produced by BPG and the learned residual coder. The resulting compression system achieves state-of-the-art performance in learned lossless full-resolution image compression, outperforming previous learned approaches as well as PNG, WebP, and JPEG2000.
Despite impressive performance as evaluated on i.i.d. holdout data, deep neural networks depend heavily on superficial statistics of the training data and are liable to break under distribution shift. For example, subtle changes to the background or texture of an image can break a seemingly powerful classifier. Building on previous work on domain generalization, we hope to produce a classifier that will generalize to previously unseen domains, even when domain identifiers are not available during training. This setting is challenging because the model may extract many distribution-specific (superficial) signals together with distribution-agnostic (semantic) signals. To overcome this challenge, we incorporate the gray-level co-occurrence matrix (GLCM) to extract patterns that our prior knowledge suggests are superficial: they are sensitive to the texture but unable to capture the gestalt of an image. Then we introduce two techniques for improving our networks out-of-sample performance. The first method is built on the reverse gradient method that pushes our model to learn representations from which the GLCM representation is not predictable. The second method is built on the independence introduced by projecting the models representation onto the subspace orthogonal to GLCM representations. We test our method on the battery of standard domain generalization data sets and, interestingly, achieve comparable or better performance as compared to other domain generalization methods that explicitly require samples from the target distribution for training.
In this paper, we explore methods of complicating self-supervised tasks for representation learning. That is, we do severe damage to data and encourage a network to recover them. First, we complicate each of three powerful self-supervised task candid ates: jigsaw puzzle, inpainting, and colorization. In addition, we introduce a novel complicated self-supervised task called Completing damaged jigsaw puzzles which is puzzles with one piece missing and the other pieces without color. We train a convolutional neural network not only to solve the puzzles, but also generate the missing content and colorize the puzzles. The recovery of the aforementioned damage pushes the network to obtain robust and general-purpose representations. We demonstrate that complicating the self-supervised tasks improves their origin
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا