ترغب بنشر مسار تعليمي؟ اضغط هنا

A Formalism for Scattering of Complex Composite Structures. 2 Distributed Reference Points

277   0   0.0 ( 0 )
 نشر من قبل Carsten Svaneborg
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently we developed a formalism for the scattering from linear and acyclic branched structures build of mutually non-interacting sub-units.{[}C. Svaneborg and J. S. Pedersen, J. Chem. Phys. 136, 104105 (2012){]} We assumed each sub-unit has reference points associated with it. These are well defined positions where sub-units can be linked together. In the present paper, we generalize the formalism to the case where each reference point can represent a distribution of potential link positions. We also present a generalized diagrammatic representation of the formalism. Scattering expressions required to model rods, polymers, loops, flat circular disks, rigid spheres and cylinders are derived. and we use them to illustrate the formalism by deriving the generic scattering expression for micelles and bottle brush structures and show how the scattering is affected by different choices of potential link positions.



قيم البحث

اقرأ أيضاً

We present a formalism for the scattering of an arbitrary linear or acyclic branched structure build by joining mutually non-interacting arbitrary functional sub-units. The formalism consists of three equations expressing the structural scattering in terms of three equations expressing the sub-unit scattering. The structural scattering expressions allows a composite structures to be used as sub-units within the formalism itself. This allows the scattering expressions for complex hierarchical structures to be derived with great ease. The formalism is furthermore generic in the sense that the scattering due to structural connectivity is completely decoupled from internal structure of the sub-units. This allows sub-units to be replaced by more complex structures. We illustrate the physical interpretation of the formalism diagrammatically. By applying a self-consistency requirement we derive the pair distributions of an ideal flexible polymer sub-unit. We illustrate the formalism by deriving generic scattering expressions for branched structures such as stars, pom-poms, bottle-brushes, and dendrimers build out of asymmetric two-functional sub-units.
The phi4 scalar field theory in three dimensions, prototype for the study of phase transitions, is investigated by means of the hierarchical reference theory (HRT) in its smooth cutoff formulation. The critical behavior is described by scaling laws a nd critical exponents which compare favorably with the known values of the Ising universality class. The inverse susceptibility vanishes identically inside the coexistence curve, providing a first principle implementation of the Maxwell construction, and shows the expected discontinuity across the phase boundary, at variance with the usual sharp cutoff implementation of HRT. The correct description of first and second order phase transitions within a microscopic, nonperturbative approach is thus achieved in the smooth cutoff HRT.
We introduce a scheme for deriving an optimally-parametrised Langevin dynamics of few collective variables from data generated in molecular dynamics simulations. The drift and the position-dependent diffusion profiles governing the Langevin dynamics are expressed as explicit averages over the input trajectories. The proposed strategy is applicable to cases when the input trajectories are generated by subjecting the system to a external time-dependent force (as opposed to canonically-equilibrated trajectories). Secondly, it provides an explicit control on the statistical uncertainty of the drift and diffusion profiles. These features lend to the possibility of designing the external force driving the system so to maximize the accuracy of the drift and diffusions profile throughout the phase space of interest. Quantitative criteria are also provided to assess a posteriori the satisfiability of the requisites for applying the method, namely the Markovian character of the stochastic dynamics of the collective variables.
177 - H.W. Diehl , M. Shpot 2002
A two-loop renormalization group analysis of the critical behaviour at an isotropic Lifshitz point is presented. Using dimensional regularization and minimal subtraction of poles, we obtain the expansions of the critical exponents $ u$ and $eta$, the crossover exponent $phi$, as well as the (related) wave-vector exponent $beta_q$, and the correction-to-scaling exponent $omega$ to second order in $epsilon_8=8-d$. These are compared with the authors recent $epsilon$-expansion results [{it Phys. Rev. B} {bf 62} (2000) 12338; {it Nucl. Phys. B} {bf 612} (2001) 340] for the general case of an $m$-axial Lifshitz point. It is shown that the expansions obtained here by a direct calculation for the isotropic ($m=d$) Lifshitz point all follow from the latter upon setting $m=8-epsilon_8$. This is so despite recent claims to the contrary by de Albuquerque and Leite [{it J. Phys. A} {bf 35} (2002) 1807].
138 - Gil Ariel , Haim Diamant 2020
The thermodynamic definition of entropy can be extended to nonequilibrium systems based on its relation to information. To apply this definition in practice requires access to the physical systems microstates, which may be prohibitively inefficient t o sample or difficult to obtain experimentally. It is beneficial, therefore, to relate the entropy to other integrated properties which are accessible out of equilibrium. We focus on the structure factor, which describes the spatial correlations of density fluctuations and can be directly measured by scattering. The information gained by a given structure factor regarding an otherwise unknown system provides an upper bound for the systems entropy. We find that the maximum-entropy model corresponds to an equilibrium system with an effective pair-interaction. Approximate closed-form relations for the effective pair-potential and the resulting entropy in terms of the structure factor are obtained. As examples, the relations are used to estimate the entropy of an exactly solvable model and two simulated systems out of equilibrium. The focus is on low-dimensional examples, where our method, as well as a recently proposed compression-based one, can be tested against a rigorous direct-sampling technique. The entropy inferred from the structure factor is found to be consistent with the other methods, superior for larger system sizes, and accurate in identifying global transitions. Our approach allows for extensions of the theory to more complex systems and to higher-order correlations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا