ﻻ يوجد ملخص باللغة العربية
Numerical simulations of filamentary type II superconducting wires under simultaneous AC transport current and oscillating transverse magnetic fields are performed within the critical state approximation. The time dependences of the current density profiles, magnetic flux lines, local power dissipation and magnetic moment are featured. Noticeable non-homogeneous dissipation and field distortions are displayed. Also, significant differences between the obtained AC-losses and those predicted by regular approximation formulas are reported. Finally, an outstanding low pass filtering effect intrinsic to the magnetic response of the system is described.
The complex mechanisms governing charge migration in DNA oligomers reflect the rich structural and electronic properties of the molecule of life. Controlling the mechanical stability of DNA nanowires in charge transport experiments is a requisite for
MgB2 monofilamentary nickel-sheated tapes and wires were fabricated by means of the ex-situ powder-in-tube method using either high-energy ball milled and low temperature synthesized powders. All sample were sintered at 920 C in Ar flow. The milling
In DC and AC practical applications of MgB2 superconducting wires an important role is represented by the material sheath which has to provide, among other things, a suitable electrical and thermal stabilization. A way to obtain a large enough amount
We study mechanisms of vortex nucleation in Nb$_3$Sn Superconducting RF (SRF) cavities using a combination of experimental, theoretical, and computational methods. Scanning transmission electron microscopy (STEM) image and energy dispersive spectrosc
Using fluorescent microthermal imaging we have investigated the origin of two-step behavior in I-V curves for a current-carrying YBa_2Cu_3O_x superconducting bridge. High resolution temperature maps reveal that as the applied current increases the fi