ﻻ يوجد ملخص باللغة العربية
PTF10ops is a Type Ia supernova (SN Ia), whose lightcurve and spectral properties place it outside the current SN Ia subtype classifications. Its spectra display the characteristic lines of subluminous SNe Ia, but it has a normal-width lightcurve with a long rise-time, typical of normal luminosity SNe Ia. The early-time optical spectra of PTF10ops were modelled using a spectral fitting code and found to have all the lines typically seen in subluminous SNe Ia, without the need to invoke more uncommon elements. The host galaxy environment of PTF10ops is also unusual with no galaxy detected at the position of the SN down to an absolute limiting magnitude of r geq -12.0 mag, but a very massive galaxy is present at a separation of ~148 kpc and at the same redshift as suggested by the SN spectral features. The progenitor of PTF10ops is most likely a very old star, possibly in a low metallicity environment, which affects its explosion mechanism and observational characteristics. PTF10ops does not easily fit into any of the current models of either subluminous or normal SN Ia progenitor channels.
PTF09dav is a peculiar subluminous type Ia supernova (SN) discovered by the Palomar Transient Factory (PTF). Spectroscopically, it appears superficially similar to the class of subluminous SN1991bg-like SNe, but it has several unusual features which
The Type~Ia supernova (SN~Ia) 2017cfd in IC~0511 (redshift z = 0.01209+- 0.00016$) was discovered by the Lick Observatory Supernova Search 1.6+-0.7 d after the fitted first-light time (FFLT; 15.2 d before B-band maximum brightness). Photometric and s
Subluminous Type Ia supernovae, such as the Type Iax class prototype SN 2002cx, are described by a variety of models such as the failed detonation and partial deflagration of an accreting carbon-oxygen white dwarf star, or the explosion of an accreti
We present the intensive spectroscopic follow up of the type Ia supernova (SN Ia) 2014J in the starburst galaxy M82. Twenty-seven optical spectra have been acquired from January 22nd to September 1st 2014 with the Isaac Newton (INT) and William Hersc
We develop a new framework for use in exploring Type Ia Supernova (SN Ia) spectra. Combining Principal Component Analysis (PCA) and Partial Least Square analysis (PLS) we are able to establish correlations between the Principal Components (PCs) and s