ترغب بنشر مسار تعليمي؟ اضغط هنا

Noise Sensitivity in Continuum Percolation

132   0   0.0 ( 0 )
 نشر من قبل Robert Morris
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that the Poisson Boolean model, also known as the Gilbert disc model, is noise sensitive at criticality. This is the first such result for a Continuum Percolation model, and the first for which the critical probability p_c e 1/2. Our proof uses a version of the Benjamini-Kalai-Schramm Theorem for biased product measures. A quantitative version of this result was recently proved by Keller and Kindler. We give a simple deduction of the non-quantitative result from the unbiased version. We also develop a quite general method of approximating Continuum Percolation models by discrete models with p_c bounded away from zero; this method is based on an extremal result on non-uniform hypergraphs.



قيم البحث

اقرأ أيضاً

141 - Daniel Ahlberg 2013
Let $mathcal{H}$ denote a collection of subsets of ${1,2,ldots,n}$, and assign independent random variables uniformly distributed over $[0,1]$ to the $n$ elements. Declare an element $p$-present if its corresponding value is at most $p$. In this pape r, we quantify how much the observation of the $r$-present ($r>p$) set of elements affects the probability that the set of $p$-present elements is contained in $mathcal{H}$. In the context of percolation, we find that this question is closely linked to the near-critical regime. As a consequence, we show that for every $r>1/2$, bond percolation on the subgraph of the square lattice given by the set of $r$-present edges is almost surely noise sensitive at criticality, thus generalizing a result due to Benjamini, Kalai and Schramm.
A bootstrap percolation process on a graph G is an infection process which evolves in rounds. Initially, there is a subset of infected nodes and in each subsequent round every uninfected node which has at least r infected neighbours becomes infected and remains so forever. The parameter r > 1 is fixed. We consider this process in the case where the underlying graph is an inhomogeneous random graph whose kernel is of rank 1. Assuming that initially every vertex is infected independently with probability p > 0, we provide a law of large numbers for the number of vertices that will have been infected by the end of the process. We also focus on a special case of such random graphs which exhibit a power-law degree distribution with exponent in (2,3). The first two authors have shown the existence of a critical function a_c(n) such that a_c(n)=o(n) with the following property. Let n be the number of vertices of the underlying random graph and let a(n) be the number of the vertices that are initially infected. Assume that a set of a(n) vertices is chosen randomly and becomes externally infected. If a(n) << a_c(n), then the process does not evolve at all, with high probability as n grows, whereas if a(n)>> a_c(n), then with high probability the final set of infected vertices is linear. Using the techniques of the previous theorem, we give the precise asymptotic fraction of vertices which will be eventually infected when a(n) >> a_c (n) but a(n) = o(n). Note that this corresponds to the case where p approaches 0.
We prove that the probability of crossing a large square in quenched Voronoi percolation converges to 1/2 at criticality, confirming a conjecture of Benjamini, Kalai and Schramm from 1999. The main new tools are a quenched version of the box-crossing property for Voronoi percolation at criticality, and an Efron-Stein type bound on the variance of the probability of the crossing event in terms of the sum of the squares of the influences. As a corollary of the proof, we moreover obtain that the quenched crossing event at criticality is almost surely noise sensitive.
We study the critical probability for the metastable phase transition of the two-dimensional anisotropic bootstrap percolation model with $(1,2)$-neighbourhood and threshold $r = 3$. The first order asymptotics for the critical probability were recen tly determined by the first and second authors. Here we determine the following sharp second and third order asymptotics: [ p_cbig( [L]^2,mathcal{N}_{(1,2)},3 big) ; = ; frac{(log log L)^2}{12log L} , - , frac{log log L , log log log L}{ 3log L} + frac{left(log frac{9}{2} + 1 pm o(1) right)log log L}{6log L}. ] We note that the second and third order terms are so large that the first order asymptotics fail to approximate $p_c$ even for lattices of size well beyond $10^{10^{1000}}$.
We consider the Poisson Boolean percolation model in $mathbb{R}^2$, where the radii of each ball is independently chosen according to some probability measure with finite second moment. For this model, we show that the two thresholds, for the existen ce of an unbounded occupied and an unbounded vacant component, coincide. This complements a recent study of the sharpness of the phase transition in Poisson Boolean percolation by the same authors. As a corollary it follows that for Poisson Boolean percolation in $mathbb{R}^d$, for any $dge2$, finite moment of order $d$ is both necessary and sufficient for the existence of a nontrivial phase transition for the vacant set.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا