ترغب بنشر مسار تعليمي؟ اضغط هنا

Study of elliptical flow at VECC-SCC500 energies

317   0   0.0 ( 0 )
 نشر من قبل Varinderjit Kaur
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the transverse momentum dependence of elliptical flow at VECC energies by using the projectiles having masses lying between 16 and 56 units. The detailed study in this direction will be fruitful for experimentlists.

قيم البحث

اقرأ أيضاً

we study the effect of Coulomb interactions on balance energy for various colliding nuclei in terms of mass asymmetry. This study shows that the balance energy is affected by the Coulomb interactions as well as different nuclear equations of state. T he preliminary results calculated theoretically will be of great use for scientists at VECC. This study is further in progress.
We present a detailed study of chemical freeze-out in nucleus-nucleus collisions at beam energies of 11.6, 30, 40, 80 and 158A GeV. By analyzing hadronic multiplicities within the statistical hadronization approach, we have studied the chemical equil ibration of the system as a function of center of mass energy and of the parameters of the source. Additionally, we have tested and compared differe
This work presents further analysis of the three- and four-neutron systems in the low energy regime using adiabatic hyperspherical methods. In our previous Phys. Rev. Lett. article (Phys. Rev. Lett. 125, 052501 (2020)), the low-energy behavior of the se neutron systems was treated in the adiabatic approximation, neglecting the off-diagonal non-adiabatic couplings. A thorough analysis of the density of states through a multi-channel treatment of the three-and four-neutron scattering near the scattering continuum threshold is performed, showing no evidence of a 4n resonance at low energy. A detailed analysis of the long-range behavior of the lowest few adiabatic hyperspherical potentials shows there is an attractive $rho^{-3}$ universal behavior which dominates in the low-energy regime of the multi-channel scattering. This long-range behavior leads to a divergent behavior of the density of state for $Erightarrow0$ that could account for the low-energy signal observed in the 2016 experiment by Kisamori et al. (Phys. Rev. Lett. 116, 052501 (2016)).
The freeze-out conditions in the light (S+S) and heavy (Pb+Pb) colliding systems of heavy nuclei at 160 AGeV/$c$ are analyzed within the microscopic Quark Gluon String Model (QGSM). We found that even for the most heavy systems particle emission take s place from the whole space-time domain available for the system evolution, but not from the thin freeze-out hypersurface, adopted in fluid dynamical models. Pions are continuously emitted from the whole volume of the reaction and reflect the main trends of the system evolution. Nucleons in Pb+Pb collisions initially come from the surface region. For both systems there is a separation of the elastic and inelastic freeze-out. The mesons with large transverse momenta, $p_t$, are predominantly produced at the early stages of the reaction. The low $p_t$-component is populated by mesons coming mainly from the decay of resonances. This explains naturally the decreasing source sizes with increasing $p_t$, observed in HBT interferometry. Comparison with S+S and Au+Au systems at 11.6 AGeV/$c$ is also presented.
We have performed CDCC calculations for collisions of $^{7}$Li projectiles on $^{59}$Co, $^{144}$Sm and $^{208}$Pb targets at near-barrier energies, to assess the importance of the Coulomb and the nuclear couplings in the breakup of $^{7}$Li, as well as the Coulomb-nuclear interference. We have also investigated scaling laws, expressing the dependence of the cross sections on the charge and the mass of the target. This work is complementary to the one previously reported by us on the breakup of $^{6}$Li. Here we explore the similarities and differences between the results for the two Lithium isotopes. The relevance of the Coulomb dipole strength at low energy for the two-cluster projectile is investigated in details.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا