ترغب بنشر مسار تعليمي؟ اضغط هنا

The first candidate for chiral nuclei in the $Asim80$ mass region: $^{80}$Br

468   0   0.0 ( 0 )
 نشر من قبل ShuangQuan Zhang
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Excited states of $^{80}$Br have been investigated via the $^{76}$Ge($^{11}$B, $alpha$3n) and $^{76}$Ge($^{7}$Li, 3n) reactions and a new $Delta I$ = 1 band has been identified which resides $sim$ 400 keV above the yrast band. Based on the experimental results and their comparison with the triaxial particle rotor model calculated ones, a chiral character of the two bands within the $pi g_{9/2}otimes u g_{9/2}$ configuration is proposed, which provides the first evidence for chirality in the $Asim80$ region.



قيم البحث

اقرأ أيضاً

156 - I. Mardor 2020
Mass measurements of the $^{69}$As, $^{70,71}$Se and $^{71}$Br isotopes, produced via fragmentation of a $^{124}$Xe primary beam at the FRS at GSI, have been performed with the multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) of the F RS Ion Catcher with an unprecedented mass resolving power of almost 1,000,000. For the $^{69}$As isotope, this is the first direct mass measurement. A mass uncertainty of 22 keV was achieved with only 10 events. For the $^{70}$Se isotope, a mass uncertainty of 2.6 keV was obtained, corresponding to a relative accuracy of $delta$m/m = 4.0$times 10^{-8}$, with less than 500 events. The masses of the $^{71}$Se and $^{71}$Br isotopes were measured with an uncertainty of 23 and 16 keV, respectively. Our results for the $^{70,71}$Se and $^{71}$Br isotopes agree with the 2016 Atomic Mass Evaluation, and our result for the $^{69}$As isotope resolves the discrepancy between previous indirect measurements. We measured also the mass of $^{14}$N$^{15}$N$^{40}$Ar (A=69) with a relative accuracy of $delta$m/m = 1.7$times 10^{-8}$, the highest yet achieved with a MR-TOF-MS. Our results show that the measured restrengthening of the proton-neutron interaction ($delta$V$_{pn}$) for odd-odd nuclei at the N=Z line above Z=29 (recently extended to Z=37) is hardly evident at N-Z=2, and not evident at N-Z=4. Nevertheless, detailed structure of $delta$V$_{pn}$ along the N-Z=2 and N-Z=4 lines, confirmed by our mass measurements, may provide a hint regarding the ongoing $approx$500 keV discrepancy in the mass value of the $^{70}$Br isotope, which prevents including it in the world average of ${Ft}$-value for superallowed 0$^+rightarrow$ 0$^+$ $beta$ decays. The reported work sets the stage for mass measurements with the FRS Ion Catcher of nuclei at and beyond the N=Z line in the same region of the nuclear chart, including the $^{70}$Br isotope.
Several new bands have been identified in 130Ba, among which there is one with band-head spin 8+. Its properties are in agreement with the Fermi-aligned u h11/2^2 , 7/2+[523] otimes 9/2-[514] Nilsson configuration. This is the first observation of a two-quasiparticle t-band in the A=130 mass region. The t-band is fed by a dipole band involving two additional h11/2 protons. The odd-spin partners of the proton and neutron S-bands and the ground-state band at high spins are also newly identified. The observed bands are discussed using several theoretical models, which strongly suggest the coexistence of prolate and oblate shapes polarized by rotation aligned two-proton and two-neutron configurations, as well as prolate collective rotations around axes with different orientations. With the new results, 130Ba presents one of the best and most complete sets of collective excitations that a gamma-soft nucleus can manifest at medium and high spins, revealing a diversity of shapes and rotations for the nuclei in the A = 130 mass region.
218 - C. Beck 2009
An experimental overview of reactions induced by the stable, but weakly-bound nuclei 6Li, 7Li and 9Be, and by the exotic, halo nuclei 6He, 8B, 11Be and 17F on medium-mass targets, such as 58Ni, 59Co or 64Zn, is presented. Existing data on elastic sca ttering, total reaction cross sections, fusion processes, breakup and transfer channels are discussed in the framework of a CDCC approach taking into account the breakup degree of freedom.
Topological gluon configurations in quantum chromodynamics induce quark chirality imbalance in local domains, which can result in the chiral magnetic effect (CME)--an electric charge separation along a strong magnetic field. Experimental searches for the CME in relativistic heavy ion collisions via the charge-dependent azimuthal correlator ($Deltagamma$) suffer from large backgrounds arising from particle correlations (e.g. due to resonance decays) coupled with the elliptic anisotropy. We propose differential measurements of the $Deltagamma$ as a function of the pair invariant mass ($m_{rm inv}$), by restricting to high $m_{rm inv}$ thus relatively background free, and by studying the $m_{rm inv}$ dependence to separate the possible CME signal from backgrounds. We demonstrate by model studies the feasibility and effectiveness of such measurements for the CME search.
Single neutron- and proton-removal cross sections have been systematically measured for 72 medium-mass neutron-rich nuclei around Z=50 and energies around 900A MeV using the FRagment Separator (FRS) at GSI. Neutron-removal cross sections are describe d by considering the knock-out process together with initial- and final-state interactions. Proton-removal cross sections are, however, significantly smaller than predicted by the same calculations. The observed difference can be explained as due to the knockout of short-correlated protons in neutron-proton dominating pairs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا