ﻻ يوجد ملخص باللغة العربية
We consider the behaviour of bipartite and tripartite non-locality between fermionic entangled states shared by observers, one of whom uniformly accelerates. We find that while fermionic entanglement persists for arbitrarily large acceleration, the Bell/CHSH inequalities cannot be violated for sufficiently large but finite acceleration. However the Svetlichny inequality, which is a measure of genuine tripartite non-locality, can be violated for any finite value of the acceleration.
In a recent paper (arXiv:1701.04298 [quant-ph]) Torov{s}, Gro{ss}ardt and Bassi claim that the potential necessary to support a composite particle in a gravitational field must necessarily cancel the relativistic coupling between internal and externa
In this work, we describe the process of teleportation between Alice in an inertial frame, and Rob who is in uniform acceleration with respect to Alice. The fidelity of the teleportation is reduced due to Davies-Unruh radiation in Robs frame. In so f
We analyze the entanglement between two modes of a free Dirac field as seen by two relatively accelerated parties. The entanglement is degraded by the Unruh effect and asymptotically reaches a non-vanishing minimum value in the infinite acceleration
We analyze the relationship between tripartite entanglement and genuine tripartite nonlocality for 3-qubit pure states in the GHZ class. We consider a family of states known as the generalized GHZ states and derive an analytical expression relating t
There is currently much interest in the recycling of entangled systems, for use in quantum information protocols by sequential observers. In this work, we study the sequential generation of Bell nonlocality via recycling one or both components of two