ﻻ يوجد ملخص باللغة العربية
Using a suite of simulations (Governato et al. 2010) which successfully produce bulgeless (dwarf) disk galaxies, we provide an analysis of their associated cold interstellar media (ISM) and stellar chemical abundance patterns. A preliminary comparison with observations is undertaken, in order to assess whether the properties of the cold gas and chemistry of the stellar components are recovered successfully. To this end, we have extracted the radial and vertical gas density profiles, neutral hydrogen velocity dispersion, and the power spectrum of structure within the ISM. We complement this analysis of the cold gas with a brief examination of the simulations metallicity distribution functions and the distribution of alpha-elements-to-iron.
We present a large sample of fully self-consistent hydrodynamical Nbody/Tree-SPH simulations of isolated dwarf spheroidal galaxies (dSphs). It has enabled us to identify the key physical parameters and mechanisms at the origin of the observed variety
We explore a range of chemical evolution models for the Local Group dwarf spheroidal (dSph) galaxy, Carina. A novel aspect of our work is the removal of the star formation history (SFH) as a `free parameter in the modeling, making use, instead, of it
We study the effects of clouds on the dynamical and chemical evolution of gas-rich dwarf galaxies, in particular focusing on two model galaxies similar to IZw18 and NGC1569. We consider both scenarios, clouds put at the beginning of the simulation an
The presence of dust strongly affects the way we see galaxies and also the chemical abundances we measure in gas. It is therefore important to study he chemical evolution of galaxies by taking into account dust evolution. We aim at performing a detai
Within the Cold Dark Matter scenario the hierarchical merging paradigm is the natural result to form massive galactic halos by the minor mergers of sub-halos and, by this, inherently their stellar halo. Although this must be also invoked for the Milk