ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical Structure of the Planetary Nebula NGC 3242 from the Hot Bubble to the Nebular Envelope

132   0   0.0 ( 0 )
 نشر من قبل Nieves Ruiz
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Nieves Ruiz




اسأل ChatGPT حول البحث

One key feature of the interacting stellar winds model of the formation of planetary nebulae (PNe) is the presence of shock-heated stellar wind confined in the central cavities of PNe. This so-called hot bubble should be detectable in X-rays. Here we present XMM-Newton observations of NGC 3242, a multiple-shell PN whose shell morphology is consistent with the interacting stellar winds model. Diffuse X-ray emission is detected within its inner shell with a plasma temperature ~2.35times10^6 K and an intrinsic X-ray luminosity ~2times10^30 ergs s^(-1) at the adopted distance of 0.55 kpc. The observed X-ray temperature and luminosity are in agreement with ad-hoc predictions of models including heat conduction. However, the chemical abundances of the X-ray-emitting plasma seem to imply little evaporation of cold material into the hot bubble, whereas the thermal pressure of the hot gas is unlikely to drive the nebular expansion as it is lower than that of the inner shell rim. These inconsistencies are compounded by the apparent large filling factor of the hot gas within the central cavity of NGC 3242. Subject headings: planetary nebulae: individual (NGC 3242)


قيم البحث

اقرأ أيضاً

Optical integral-field spectroscopy was used to investigate the planetary nebula NGC 3242. We analysed the main morphological components of this source, including its knots, but not the halo. In addition to revealing the properties ofthe physical and chemical nature of this nebula, we also provided reliable spatially resolved constraints that can be used for future photoionisation modelling of the nebula. The latter is ultimately necessary to obtain a fully self-consistent 3D picture of the physical and chemical properties of the object. The observations were obtained with the VIMOS instrument attached to VLT-UT3. Maps and values for specific morphological zones for the detected emission-lines were obtained and analysed with routines developed by the authors to derive physical and chemical conditions of the ionised gas in a 2D fashion. We obtained spatially resolved maps and mean values of the electron densities, temperatures, and chemical abundances, for specific morphological structures in NGC 3242. These results show the pixel-to-pixel variations of the the small- and large-scale structures of the source. These diagnostic maps provide information free from the biases introduced by traditional single long-slit observations. In general, our results are consistent with a uniform abundance distribution for the object, whether we look at abundance maps or integrated fluxes from specified morphological structures. The results indicate that special care should be taken with the calibration of the data and that only data with extremely good signal-to-noise ratio and spectral coverage should be used to ensure the detection of possible spatial variations.
117 - W. Liu , M. Chiao , M. R. Collier 2016
DXL (Diffuse X-rays from the Local Galaxy) is a sounding rocket mission designed to quantify and characterize the contribution of Solar Wind Charge eXchange (SWCX) to the Diffuse X-ray Background and study the properties of the Local Hot Bubble (LHB) . Based on the results from the DXL mission, we quantified and removed the contribution of SWCX to the diffuse X-ray background measured by the ROSAT All Sky Survey (RASS). The cleaned maps were used to investigate the physical properties of the LHB. Assuming thermal ionization equilibrium, we measured a highly uniform temperature distributed around kT=0.097 keV+/-0.013 keV (FWHM)+/-0.006 keV (systematic). We also generated a thermal emission measure map and used it to characterize the three-dimensional (3D) structure of the LHB which we found to be in good agreement with the structure of the local cavity measured from dust and gas.
We analyse the point-symmetric planetary nebula NGC 6309 in terms of its three-dimensional structure and of internal variations of the physical conditions to deduce the physical processes involved in its formation. We used VLA-D 3.6-cm continuum, gro und-based, and HST-archive imaging as well as long slit high- and low-dispersion spectroscopy. The low-dispersion spectra indicate a high excitation nebula, with low to medium variations of its internal physical conditions. In the optical images, the point-symmetric knots show a lack of [NII] emission as compared with similar features previously known in other PNe. A rich internal structure of the central region is seen in the HST images, resembling a deformed torus. Long slit high-dispersion spectra reveal a complex kinematics in the central region. The spectral line profiles from the external regions of NGC 6309 indicate expanding lobes (~40 km/s) as those generally found in bipolar nebulae. Finally, we have found evidence for the presence of a faint halo, possibly related to the envelope of the AGB-star progenitor. Our data indicate that NGC 6309 is a quadrupolar nebula with two pairs of bipolar lobes whose axes are oriented PA=40 and PA=76. Equatorial and polar velocities for these two pairs of lobes are 29 and 86 km/s for the bipolar system at PA=40 and 25 and 75 km/s for the bipolar system at PA=76. There is also a central torus that is expanding at 25 km/s. Kinematical age for all these structures is around 3700 to 4000 yr. We conclude that NGC 6309 was formed by a set of well-collimated bipolar outflows (jets), which were ejected in the initial stages of its formation as a planetary nebula. These jets carved the bipolar lobes in the previous AGB wind and their remnants are now observed as the point-symmetric knots tracing the edges of the lobes.
This project sought to consider two important aspects of the planetary nebula NGC 3242 using new long-slit HST/STIS spectra. First, we investigated whether this object is chemically homogeneous by dividing the slit into different regions spatially an d calculating the abundances of each region. The major result is that the elements of He, C, O, and Ne are chemically homogeneous within uncertainties across the regions probed, implying that the stellar outflow was well-mixed. Second, we constrained the stellar properties using photoionization models computed by CLOUDY and tested the effects of three different density profiles on these parameters. The three profiles tested were a constant density profile, a Gaussian density profile, and a Gaussian with a power law density profile. The temperature and luminosity were not affected significantly by the choice of density structure. The values for the stellar temperature and luminosity from our best fit model are 89.7$^{+7.3}_{-4.7}$kK and log(L/Lsol)=3.36$^{+0.28}_{-0.22}$, respectively. Comparing to evolutionary models on an HR diagram, this corresponds to an initial and final mass of 0.95$^{+0.35}_{-0.09}$ Msol and 0.56$^{+0.01}_{-0.01}$ Msol, respectively.
The Chandra X-ray Observatory has detected relatively hard X-ray emission from the central stars of several planetary nebulae (PNe). A subset have no known late-type companions, making it very difficult to isolate which of several competing mechanism s may be producing the X-ray emission. The central star of NGC 2392 is one of the most vexing members, with substantial indirect evidence for a hot white dwarf (WD) companion. Here we report on the results of a radial velocity (RV) monitoring campaign of its central star with the HERMES echelle spectrograph of the Flemish 1.2 m Mercator telescope. We discover a single-lined spectroscopic binary with an orbital period of $1.902208pm0.000013$ d and a RV semi-amplitude of $9.96pm0.13$ km/s. The high degree of nebula ionisation requires a WD companion ($Mgtrsim0.6 M_odot$), which the mass-function supports at orbital inclinations $lesssim$7 deg, in agreement with the nebula orientation of 9 deg. The hard component of the X-ray spectrum may be explained by the companion accreting mass from the wind of the Roche lobe filling primary, while the softer component may be due to colliding winds. A companion with a stronger wind than the primary could produce the latter and would be consistent with models of the observed diffuse X-ray emission detected in the nebula. The diffuse X-rays may also be powered by the jets of up to 180 km/s and active accretion would imply that they could be the first active jets of a post-common-envelope PN, potentially making NGC 2392 an invaluable laboratory to study jet formation physics. The 1.9 d orbital period rules out a double-degenerate merger leading to a Type Ia supernova and the weak wind of the primary likely also precludes a single-degenerate scenario. We suggest that a hard X-ray spectrum, in the absence of a late-type companion, could be a powerful tool to identify accreting WD companions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا