VLBI multi-epoch water maser observations are a powerful tool to study the dense, warm shocked gas very close to massive protostars. The very high-angular resolution of these observations allow us to measure the proper motions of the masers in a few
weeks, and together with the radial velocity, to determine their full kinematics. In this paper we present a summary of the main observational results obtained toward the massive star-forming regions of Cepheus A and W75N, among them: (i) the identification of different centers of high-mass star formation activity at scales of 100 AU; (ii) the discovery of new phenomena associated with the early stages of high-mass protostellar evolution (e.g., isotropic gas ejections); and (iii) the identification of the simultaneous presence of a wide-angle outflow and a highly collimated jet in the massive object Cep A HW2, similar to what is observed in some low-mass protostars. Some of the implications of these results in the study of high-mass star formation are discussed.
We present the results of ammonia observations towards 66 massive star forming regions identified by the Red MSX source survey. We have used the Green Bank Telescope and the K-band focal plane array to map the ammonia NH3 (1,1) and (2,2) inversion em
ission at a resolution of 30 arcsec in 8 arcmin regions towards the positions of embedded massive star formation. We have identified a total of 115 distinct clumps, approximately two-thirds of which are associated with an embedded massive young stellar object or compact HII region, while the others are classified as quiescent. There is a strong spatial correlation between the peak NH3 emission and the presence of embedded objects. We derive the spatial distribution of the kinetic gas temperatures, line widths, and NH$_3$ column densities from these maps, and by combining these data with dust emission maps we estimate clump masses, H$_2$ column densities and ammonia abundances. The clumps have typical masses of ~1000 Msun and radii ~0.5 pc, line widths of ~2 km/s and kinetic temperatures of ~16-20 K. We find no significant difference between the sizes and masses of the star forming and quiescent subsamples; however, the distribution maps reveal the presence of temperature and line width gradients peaking towards the centre for the star forming clumps while the quiescent clumps show relatively uniform temperatures and line widths throughout. Virial analysis suggests that the vast majority of clumps are gravitationally bound and are likely to be in a state of global free fall in the absence of strong magnetic fields. The similarities between the properties of the two subsamples suggest that the quiescent clumps are also likely to form massive stars in the future, and therefore provide a excellent opportunity to study the initial conditions of massive pre-stellar and protostellar clumps.
We present the results of a Nobeyama 45-m water maser and ammonia survey of all 94 northern GLIMPSE Extended Green Objects (EGOs), a sample of massive young stellar objects (MYSOs) identified based on their extended 4.5 micron emission. We observed t
he ammonia (1,1), (2,2), and (3,3) inversion lines, and detect emission towards 97%, 63%, and 46% of our sample, respectively (median rms ~50 mK). The water maser detection rate is 68% (median rms ~0.11 Jy). The derived water maser and clump-scale gas properties are consistent with the identification of EGOs as young MYSOs. To explore the degree of variation among EGOs, we analyze subsamples defined based on MIR properties or maser associations. Water masers and warm dense gas, as indicated by emission in the higher-excitation ammonia transitions, are most frequently detected towards EGOs also associated with both Class I and II methanol masers. 95% (81%) of such EGOs are detected in water (ammonia(3,3)), compared to only 33% (7%) of EGOs without either methanol maser type. As populations, EGOs associated with Class I and/or II methanol masers have significantly higher ammonia linewidths, column densities, and kinetic temperatures than EGOs undetected in methanol maser surveys. However, we find no evidence for statistically significant differences in water maser properties (such as maser luminosity) among any EGO subsamples. Combining our data with the 1.1 mm continuum Bolocam Galactic Plane Survey, we find no correlation between isotropic water maser luminosity and clump number density. Water maser luminosity is weakly correlated with clump (gas) temperature and clump mass.
We present the results from NH$_{3}$ mapping observations towards 34 regions identified by the Red MSX Source (RMS) survey. We have used the Australia Telescope Compact Array to map ammonia (1,1) and (2,2) inversion emission spectra at a resolution o
f 10 with velocity channel resolution of 0.4$,$km$,$s$^{-1}$ towards the positions of embedded massive star formation. Complementary data have been used from the ATLASGAL and GLIMPSE Legacy Surveys in order to improve the understanding of the regions and to estimate physical parameters for the environments. The fields have typical masses of ~1000$,$M$odot$, radii of ~0.15$,$pc and distances of ~3.5$,$kpc. Luminosities range between ~10$^{3}$ to ~10$^{6}$$,$L$odot$ and kinetic temperatures between 10 and 40$,$K. We classify each field into one of two subsets in order to construct an evolutionary system for massive star formation in these regions based on the morphology and relative positions of the NH$_{3}$ emission, RMS sources and ATLASGAL thermal dust emission. Differences in morphology between NH$_{3}$ emission and ATLASGAL clumps are shown to correspond to evolutionary stages of ongoing massive star formation in these regions. The study has been further refined by including the positions of known methanol and water masers in the regions to gain insight into possible protostellar regions and triggered star formation.