ﻻ يوجد ملخص باللغة العربية
We suggest a broadband optical unidirectional arrayed nanoantenna consisting of equally spaced nanorods of gradually varying length. Each nanorod can be driven by near-field quantum emitters radiating at different frequencies or, according to the reciprocity principle, by an incident light at the same frequency. Broadband unidirectional emission and reception characteristics of the nano-antenna open up novel opportunities for subwavelength light manipulation and quantum communication, as well as for enhancing the performance of photoactive devices such as photovoltaic detectors, light-emitting diodes, and solar cells.
Graphene is an ideal material for integrated nonlinear optics thanks to its strong light-matter interaction and large nonlinear optical susceptibility. Graphene has been used in optical modulators, saturable absorbers, nonlinear frequency converters,
Nanoantennas for light enhance light-matter interaction at the nanoscale making them useful in optical communication, sensing, and spectroscopy. So far nanoantenna engineering has been largely based on rules derived from the radio frequency domain wh
This paper proposes an experiment to easily detect radiative heat transfer in the microwave range. Following an idea given by Pendry more than a decade ago [1], we show that a 3D array of tungsten 2micron radius wires with a 1 cm period makes a low c
We suggest a technique for using off-resonance spectral comb generation to produce broadband frequency modulated, and therefore, amplitude quieted light. Results include closed-form formulae for the amplitudes and phases of all of the spectral components.
We demonstrate an individual single-walled carbon nanotube light emitter integrated onto a microcavity and a waveguide operating in the telecom wavelength regime. Light emission from the carbon nanotube is enhanced at the cavity resonance and is effi