ﻻ يوجد ملخص باللغة العربية
The irreducible background from Z(nunu)+jets, to beyond the Standard Model searches at the LHC, can be calibrated using gamma+jets data. The method utilises the fact that at high vector boson pT, the event kinematics are the same for the two processes and the cross sections differ mainly due to the boson-quark couplings. The method relies on a precise prediction from theory of the Z/gamma cross section ratio at high pT, which should be insensitive to effects from full event simulation. We study the Z/gamma ratio for final states involving 1, 2 and 3 hadronic jets, using both the leading-order parton shower Monte Carlo program Pythia8 and a leading-order matrix element program Gambos. This enables us both to understand the underlying parton dynamics in both processes, and to quantify the theoretical systematic uncertainties in the ratio predictions. Using a typical set of experimental cuts, we estimate the net theoretical uncertainty in the ratio to be of order 7%, when obtained from a Monte Carlo program using multiparton matrix-elements for the hard process. Uncertainties associated with full event simulation are found to be small. The results indicate that an overall accuracy of the method, excluding statistical errors, of order 10% should be possible.
The Large Hadron Collider witnesses the highest ever production cross-section of double parton scattering processes. The production of a Z-boson along with two jets from double parton scattering provides a unique opportunity to explore the kinematics
Multiple-parton interactions play a vital role in hadron-hadron collisions. This paper presents a study of the multiple-parton interactions with simulated Z + jets events in proton-proton collisions at a centre-of-mass energy of 13 TeV. The events ar
We investigate possible scenarios of light-squark production at the LHC as a new mechanism to produce Higgs bosons in association with jets. The study is motivated by the SUSY search for H+jets events, performed by the CMS collaboration on 8 and 13 T
We present the calculation of the NLO QCD corrections to the associated production of a Higgs boson and two jets, in the infinite top-mass limit. We discuss the technical details of the computation and we show the numerical impact of the radiative co
We study the Higgs boson $(h)$ decay to two light jets at the 14 TeV High-Luminosity-LHC (HL-LHC), where a light jet ($j$) represents any non-flavor tagged jet from the observational point of view. The decay mode $hto gg$ is chosen as the benchmark s