ترغب بنشر مسار تعليمي؟ اضغط هنا

Technique for high axial shielding factor performance of large-scale, thin, open-ended, cylindrical Metglas magnetic shields

304   0   0.0 ( 0 )
 نشر من قبل Brad Plaster
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Metglas 2705M is a low-cost commercially-available, high-permeability Cobalt-based magnetic alloy, provided as a 5.08-cm wide and 20.3-$mu$m thick ribbon foil. We present an optimized construction technique for single-shell, large-scale (human-size), thin, open-ended cylindrical Metglas magnetic shields. The measured DC axial and transverse magnetic shielding factors of our 0.61-m diameter and 1.83-m long shields in the Earths magnetic field were 267 and 1500, for material thicknesses of only 122 $mu$m (i.e., 6 foil layers). The axial shielding performance of our single-shell Metglas magnetic shields, obtained without the use of magnetic shaking techniques, is comparable to the performance of significantly thicker, multiple-shell, open-ended Metglas magnetic shields in comparable-magnitude, low-frequency applied external fields reported previously in the literature.

قيم البحث

اقرأ أيضاً

We present results from studies of the effectiveness of an overlap technique for forming a magnetic seal across a gap at the boundary between a cylindrical magnetic shield and an end-cap. In this technique a thin foil of magnetic material overlaps th e two surfaces, thereby spanning the gap across the cylinder and the end-cap, with the magnetic seal then formed by clamping the thin magnetic foil to the surfaces of the cylindrical shield and the end-cap on both sides of the gap. In studies with a prototype 31-cm diameter, 91-cm long, 0.16-cm thick cylindrical magnetic shield and flared end-cap, the magnetic shielding performance of our overlap technique is comparable to that obtained with the conventional method in which the end-cap is placed in direct lapped contact with the cylindrical shield via through bolts or screws.
We describe a high-performance, compact optical frequency standard based on a microfabricated Rb vapor cell and a low-noise, external cavity diode laser operating on the Rb two-photon transition at 778 nm. The optical standard achieves an instability of 1.8x10$^{-13}$/$sqrt{tau}$ for times less than 100 s and a flicker noise floor of 1x10$^{-14}$ out to 6000 s. At long integration times, the instability is limited by variations in optical probe power and the AC Stark shift. The retrace was measured to 5.7x10$^{-13}$ after 30 hours of dormancy. Such a simple, yet high-performance optical standard could be suitable as an accurate realization of the SI meter or, if coupled with an optical frequency comb, as a compact atomic clock comparable to a hydrogen maser.
We previously reported on the complex permittivity and dc conductivity of waste-activated sludge. The measurements, spanning a frequency range of 3 MHz to 40 GHz, were made using an open-ended coaxial transmission line. Although this technique is wel l established in the literature, we found that it was necessary to combine methods from several papers to use the open-ended coaxial probe to reliably characterize biological samples having a high dc conductivity. Here, we provide a set of detailed and practical guidelines that can be used to determine the permittivity and conductivity of biological samples over a broad frequency range. Due to the electrode polarization effect, low frequency measurements of conducting samples require corrections to extract the intrinsic electrical properties. We describe one practical correction scheme and verify its reliability using a control sample.
We describe the realization and characterization of a compact, autonomous fiber laser system that produces the optical frequencies required for laser cooling, trapping, manipulation, and detection of $^{87}$Rb atoms - a typical atomic species for eme rging quantum technologies. This device, a customized laser system from the Muquans company, is designed for use in the challenging operating environment of the Laboratoire Souterrain `{a} Bas Bruit (LSBB) in France, where a new large scale atom interferometer is being constructed underground - the MIGA antenna. The mobile bench comprises four frequency-agile C-band Telecom diode lasers that are frequency doubled to 780 nm after passing through high-power fiber amplifiers. The first laser is frequency stabilized on a saturated absorption signal via lock-in amplification, which serves as an optical frequency reference for the other three lasers via optical phase-locked loops. Power and polarization stability are maintained through a series of custom, flexible micro-optic splitter/combiners that contain polarization optics, acousto-optic modulators, and shutters. Here, we show how the laser system is designed, showcasing qualities such as reliability, stability, remote control, and flexibility, while maintaining the qualities of laboratory equipment. We characterize the laser system by measuring the power, polarization, and frequency stability. We conclude with a demonstration using a cold atom source from the MIGA project and show that this laser system fulfills all requirements for the realization of the antenna.
82 - J. Ahokas 2021
We describe the design and performance of a large magnetic trap for storing and cooling of atomic hydrogen (H). The trap operates in the vacuum space of a dilution refrigerator at a temperature of 1.5 K. Aiming at a large volume of the trap we implem ented the octupole configuration of linear currents (Ioffe bars) for the radial confinement, combined with two axial pinch coils and a 3 T solenoid for the cryogenic H dissociator. The octupole magnet consists of eight race-track segments which are compressed towards each other with magnetic forces. This provides a mechanically stable and robust construction with a possibility of replacement or repair of each segment. A maximum trap depth of 0.54 K (0.8 T) was reached, corresponding to an effective volume of 0.5 liters for hydrogen gas at 50 mK. This is an order of magnitude larger than ever used for trapping atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا