ترغب بنشر مسار تعليمي؟ اضغط هنا

Linearized flavor-stability analysis of dense neutrino streams

125   0   0.0 ( 0 )
 نشر من قبل Amol Dighe
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutrino-neutrino interactions in dense neutrino streams, like those emitted by a core-collapse supernova, can lead to self-induced neutrino flavor



قيم البحث

اقرأ أيضاً

The flavor transformation in a dense neutrino gas can have a significant impact on the physical and chemical evolution of its surroundings. In this work we demonstrate that a dynamic, fast flavor oscillation wave can develop spontaneously in a one-di mensional (1D) neutrino gas when the angular distributions of the electron neutrino and antineutrino cross each other. Unlike the 2D stationary models which are plagued with small-scale flavor structures, the fast flavor oscillation waves remain coherent in the dynamic 1D model in both the position and momentum spaces of the neutrino. The electron lepton number is redistributed and transported in space as the flavor oscillation wave propagates, although the total lepton number remains constant. This result may have interesting implications in the neutrino emission in and the evolution of the compact objects such as core-collapse supernovae.
We investigate the impact of the nonzero neutrino splitting and elastic neutrino-nucleon collisions on fast neutrino oscillations. Our calculations confirm that a small neutrino mass splitting and the neutrino mass hierarchy have very little effect o n fast oscillation waves. We also demonstrate explicitly that fast oscillations remain largely unaffected for the time/distance scales that are much smaller than the neutrino mean free path but are damped on larger scales. This damping originates from both the direct modification of the dispersion relation of the oscillation waves in the neutrino medium and the flattening of the neutrino angular distributions over time. Our work suggests that fast neutrino oscillation waves produced near the neutrino sphere can propagate essentially unimpeded which may have ramifications in various aspects of the supernova physics.
The flavor conversion of a neutrino usually occurs at densities $lesssim G_F^{-1} omega$, whether in the ordinary matter or the neutrino medium, and on time/distance scales of order $omega^{-1}$, where $G_F$ is the Fermi weak coupling constant and $o mega$ is the vacuum oscillation frequency of the neutrino. In 2005 Sawyer and more recently both he and other groups have shown that neutrino flavor
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا