ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of non-Gaussianity in multi-scalar field models

282   0   0.0 ( 0 )
 نشر من قبل Joseph Elliston
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the evolution of non-Gaussianity in multiple-field inflationary models, focusing on three fundamental questions: (a) How is the sign and peak magnitude of the non-linearity parameter fNL related to generic features in the inflationary potential? (b) How sensitive is fNL to the process by which an adiabatic limit is reached, where the curvature perturbation becomes conserved? (c) For a given model, what is the appropriate tool -- analytic or numerical -- to calculate fNL at the adiabatic limit? We summarise recent results obtained by the authors and further elucidate them by considering an inflection point model.



قيم البحث

اقرأ أيضاً

111 - Seoktae Koh 2005
We consider the non-Gaussianity of the nonlinear density perturbations in a single-field inflationary model when a scalar field couples nonminimally with gravity. Gravity theories with a nonminimal coupling can be transformed into the Einstein gravit y with canonical kinetic terms by using a suitable conformal transformation. We find that a nonlinear generalization of the gauge invariant quantity $zeta_i$ is invariant under the conformal transformation. With the help of this conformal invariant property, we calculate the non-Gaussianity, which is characterized by a nonlinear parameter $f_{NL}$, in nonminimal coupled scalar field theory.
Non-attractor inflation is known as the only single field inflationary scenario that can violate non-Gaussianity consistency relation with the Bunch-Davies vacuum state and generate large local non-Gaussianity. However, it is also known that the non- attractor inflation by itself is incomplete and should be followed by a phase of slow-roll attractor. Moreover, there is a transition process between these two phases. In the past literature, this transition was approximated as instant and the evolution of non-Gaussianity in this phase was not fully studied. In this paper, we follow the detailed evolution of the non-Gaussianity through the transition phase into the slow-roll attractor phase, considering different types of transition. We find that the transition process has important effect on the size of the local non-Gaussianity. We first compute the net contribution of the non-Gaussianities at the end of inflation in canonical non-attractor models. If the curvature perturbations keep evolving during the transition - such as in the case of smooth transition or some sharp transition scenarios - the $mathcal{O}(1)$ local non-Gaussianity generated in the non-attractor phase can be completely erased by the subsequent evolution, although the consistency relation remains violated. In extremal cases of sharp transition where the super-horizon modes freeze immediately right after the end of the non-attractor phase, the original non-attractor result can be recovered. We also study models with non-canonical kinetic terms, and find that the transition can typically contribute a suppression factor in the squeezed bispectrum, but the final local non-Gaussianity can still be made parametrically large.
We study an inflationary scenario with a two-form field to which an inflaton couples non-trivially. First, we show that anisotropic inflation can be realized as an attractor solution and that the two-form hair remains during inflation. A statistical anisotropy can be developed because of a cumulative anisotropic interaction induced by the background two-form field. The power spectrum of curvature perturbations has a prolate-type anisotropy, in contrast to the vector models having an oblate-type anisotropy. We also evaluate the bispectrum and trispectrum of curvature perturbations by employing the in-in formalism based on the interacting Hamiltonians. We find that the non-linear estimators $f_{NL}$ and $tau_{NL}$ are correlated with the amplitude $g_*$ of the statistical anisotropy in the power spectrum. Unlike the vector models, both $f_{NL}$ and $tau_{NL}$ vanish in the squeezed limit. However, the estimator $f_{NL}$ can reach the order of 10 in the equilateral and enfolded limits. These results are consistent with the latest bounds on $f_{NL}$ constrained by Planck.
We study scalar-tensor-tensor cross correlation $langle zeta hh rangle$ generated by the dynamics of interacting axion and SU(2) gauge fields during inflation. We quantize the quadratic action and solve the linear equations by taking into account mix ing terms in a non-perturbative manner. Combining that with the in-in formalism, we compute contributions from cubic interactions to the bispectrum $B_{zeta hh}$. We find that the bispectrum is peaked at the folded configuration, which is a unique feature encoded by the scalar mixing and localized production of tensor modes. With our parameter choice, the amplitude of the bispectrum is $k^6 B_{zeta hh} sim 10^{-16}$. The unique shape dependence, together with the parity-violating nature, is thus a distinguishing feature to search for in the CMB observables.
123 - A. Bernui , M.J. Reboucas 2014
[Abridged.] It is conceivable that no single statistical estimator can be sensitive to all forms and levels of non-Gaussianity that may be present in observed CMB data. In recent works a statistical procedure based upon the calculation of the skewnes s and kurtosis of the patches of CMB sky-sphere has been proposed and used to find out significant large-angle deviation from Gaussianity in the foreground-reduced WMAP maps. Here we address the question as to how the analysis of Gaussianity of WMAP maps is modified if the foreground-cleaned Planck maps are used, therefore extending and complementing the previous analyses in several regards. We carry out a new analysis of Gaussianity with the available nearly full-sky foreground-cleaned Planck maps. As the foregrounds are cleaned through different component separation procedures, each of the resulting Planck maps is then tested for Gaussianity. We determine quantitatively the effects for Gaussianity of masking the foreground-cleaned Planck maps with the INPMASK, VALMASK, and U73 Planck masks. We show that although the foreground-cleaned Planck maps present significant deviation from Gaussianity of different degrees when the less severe INPMASK and VALMASK are used, they become consistent with Gaussianity as detected by our indicator $S$ when masked with the union U73 mask. A slightly smaller consistency with Gaussianity is found when the $K$ indicator is employed, which seems to be associated with large-angle anomalies reported by the Planck team. Finally, we examine the robustness of the Gaussianity analyses with respect to the noise pixels as given by the Planck team, and show that no appreciable changes arise when is incorporated into the maps. The results of our analyses provide important information about the suitability of the foreground-cleaned Planck maps as Gaussian reconstructions of the CMB sky.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا