ﻻ يوجد ملخص باللغة العربية
We study the evolution of non-Gaussianity in multiple-field inflationary models, focusing on three fundamental questions: (a) How is the sign and peak magnitude of the non-linearity parameter fNL related to generic features in the inflationary potential? (b) How sensitive is fNL to the process by which an adiabatic limit is reached, where the curvature perturbation becomes conserved? (c) For a given model, what is the appropriate tool -- analytic or numerical -- to calculate fNL at the adiabatic limit? We summarise recent results obtained by the authors and further elucidate them by considering an inflection point model.
We consider the non-Gaussianity of the nonlinear density perturbations in a single-field inflationary model when a scalar field couples nonminimally with gravity. Gravity theories with a nonminimal coupling can be transformed into the Einstein gravit
Non-attractor inflation is known as the only single field inflationary scenario that can violate non-Gaussianity consistency relation with the Bunch-Davies vacuum state and generate large local non-Gaussianity. However, it is also known that the non-
We study an inflationary scenario with a two-form field to which an inflaton couples non-trivially. First, we show that anisotropic inflation can be realized as an attractor solution and that the two-form hair remains during inflation. A statistical
We study scalar-tensor-tensor cross correlation $langle zeta hh rangle$ generated by the dynamics of interacting axion and SU(2) gauge fields during inflation. We quantize the quadratic action and solve the linear equations by taking into account mix
[Abridged.] It is conceivable that no single statistical estimator can be sensitive to all forms and levels of non-Gaussianity that may be present in observed CMB data. In recent works a statistical procedure based upon the calculation of the skewnes