ترغب بنشر مسار تعليمي؟ اضغط هنا

The valence electron photoemission spectrum of semiconductors: ab initio description of multiple satellites

91   0   0.0 ( 0 )
 نشر من قبل Matteo Guzzo
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The experimental valence band photoemission spectrum of semiconductors exhibits multiple satellites that cannot be described by the GW approximation for the self-energy in the framework of many-body perturbation theory. Taking silicon as a prototypical example, we compare experimental high energy photoemission spectra with GW calculations and analyze the origin of the GW failure. We then propose an approximation to the functional differential equation that determines the exact one-body Greens function, whose solution has an exponential form. This yields a calculated spectrum, including cross sections, secondary electrons, and an estimate for extrinsic and interference effects, in excellent agreement with experiment. Our result can be recast as a dynamical vertex correction beyond GW, giving hints for further developments.



قيم البحث

اقرأ أيضاً

In this work we provide an exhaustive study of the photemission spectrum of paramagnetic FeO under pressure using a refined version of our recently derived many-body effective energy theory (MEET). We show that, within a nonmagnetic description of th e paramagnetic phase, the MEET gives an overall good description of the photoemission spectrum at ambient pressure as well as the changes it undergoes by increasing pressure. In particular at ambient pressure the band gap opens between the mixed Fe $t_{2g}$ and O $2p$ states and the Fe 4s states and, moreover, a $d$-$d$ gap opens, which is compatible with a high-spin configuration (hence nonzero local magnetic moments as observed in experiment), whereas decreasing pressure the band gap tends to close, $t_{2g}$ states tend to become fully occupied and $e_{g}$ fully unoccupied, which is compatible with a low-spin configuration (hence a collapse of the magnetic moments as observed in experiment). This is a remarkable result, since, within a nonmagnetic description of the paramagnetic phase, the MEET is capable to correctly describe the photoemission spectrum and the spin configuration at ambient as well as high pressure. For comparison we report the band gap values obtained using density-functional theory with a hybrid functional containing screened exchange (HSE06) and a variant of the $GW$ method (self-consistent COHSEX), which are reliable for the description of the antiferromagnetic phase. Both methods open a gap at ambient pressure, although, by construction, they give a low-spin configuration; increasing pressure they correctly describes the band gap closing. We also report the photoemission spectrum of the metallic phase obtained with one-shot fully-dynamical $GW$ on top of LDA, which gives a spectrum very similar to DMFT results from literature.
The simulation of transmission electron microscopy (TEM) images or diffraction patterns is often required to interpret their contrast and extract specimen features. This is especially true for high-resolution phase-contrast imaging of materials, but electron scattering simulations based on atomistic models are widely used in materials science and structural biology. Since electron scattering is dominated by the nuclear cores, the scattering potential is typically described by the widely applied independent atom model. This approximation is fast and fairly accurate, especially for scanning TEM (STEM) annular dark-field contrast, but it completely neglects valence bonding and its effect on the transmitting electrons. However, an emerging trend in electron microscopy is to use new instrumentation and methods to extract the maximum amount of information from each electron. This is evident in the increasing popularity of techniques such as 4D-STEM combined with ptychography in materials science, and cryogenic microcrystal electron diffraction in structural biology, where subtle differences in the scattering potential may be both measurable and contain additional insights. Thus, there is increasing interest in electron scattering simulations based on electrostatic potentials obtained from first principles, mainly via density functional theory, which was previously mainly required for holography. In this Review, we discuss the motivation and basis for these developments, survey the pioneering work that has been published thus far, and give our outlook for the future. We argue that a physically better justified $textit{ab initio}$ description of the scattering potential is both useful and viable for an increasing number of systems, and we expect such simulations to steadily gain in popularity and importance.
We show how an accurate first-principles treatment of the antiferromagnetic (AFM) ground state of La$_2$CuO$_4$ can be obtained without invoking any free parameters such as the Hubbard $U$. The magnitude and orientation of our theoretically predicted magnetic moment of $0.495 mu_{B}$ on Cu-sites along the (100) direction are in excellent accord with experimental results. The computed values of the band gap (1.00 eV) and the exchange-coupling (-138 meV) match the corresponding experimental values. We identify interesting band splittings below the Fermi energy, including an appreciable Hunds splitting of 1.25 eV. The magnetic form factor obtained from neutron scattering experiments is also well described by our calculations. Our study opens up a new pathway for first-principles investigations of electronic and atomic structures and phase diagrams of cuprates and other complex materials.
202 - G.Y. Guo , Yugui Yao , 2005
Relativistic band theoretical calculations reveal that intrinsic spin Hall conductivity in hole-doped archetypical semiconductors Ge, GaAs and AlAs is large $[sim 100 (hbar/e)(Omega cm)^{-1}]$, showing the possibility of spin Hall effect beyond the f our band Luttinger Hamiltonian. The calculated orbital-angular-momentum (orbital) Hall conductivity is one order of magnitude smaller, indicating no cancellation between the spin and orbital Hall effects in bulk semiconductors. Furthermore, it is found that the spin Hall effect can be strongly manipulated by strains, and that the $ac$ spin Hall conductivity in the semiconductors is large in pure as well as doped semiconductors.
BaBiO3 is a well-known example of a 3D charge density wavecompound, in which the CDW behavior is induced by charge disproportionation at the Bi site. At ambient pressure, this compound is a charge-ordered insulator, but little is known about its high -pressure behavior. In this work, we study from first-principles the high-pressure phase diagram of BaBiO3 using phonon modes analysis and evolutionary crystal structure prediction. We show that charge disproportionation is very robust in this compound and persists up to 100 GPa. This causes the system to remain insulating up to the highest pressure we studied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا