ﻻ يوجد ملخص باللغة العربية
We examine the non-equilibrium radiative heat transfer between a plate and finite cylinders and cones, making the first accurate theoretical predictions for the total heat transfer and the spatial heat flux profile for three-dimensional compact objects including corners or tips. We find qualitatively different scaling laws for conical shapes at small separations, and in contrast to a flat/slightly-curved object, a sharp cone exhibits a local emph{minimum} in the spatially resolved heat flux directly below the tip. The method we develop, in which a scattering-theory formulation of thermal transfer is combined with a boundary-element method for computing scattering matrices, can be applied to three-dimensional objects of arbitrary shape.
We explore in the present work the near-field radiative heat transfer between two semi-infinite parallel nonlocal dielectric planes by means of fluctuational electrodynamics. We use atheory for the nonlocal dielectric permittivityfunction proposed by
We study the interplay of conductive and radiative heat transfer (RHT) in planar geometries and predict that temperature gradients induced by radiation can play a significant role on the behavior of RHT with respect to gap sizes, depending largely on
Near-field radiative heat transfer between bodies at the nanoscale can surpass blackbody limits on thermal radiation by orders of magnitude due to contributions from evanescent electromagnetic fields, which carry no energy to the far-field. Thus far,
We present a general and convenient first principle method to study near-field radiative heat transfer. We show that the Landauer-like expression of heat flux can be expressed in terms of a frequency and wave-vector dependent macroscopic dielectric f
We study a one-dimensional model of radiative heat transfer for which the effect of the electromag- netic field is only from the scalar potential and thereby ignoring the vector potential contribution. This is a valid assumption when the distances be