ﻻ يوجد ملخص باللغة العربية
We present a detailed study of quantum oscillations in the antiferromagnetically ordered pnictide compound SrFe$_2$As$_2$ as the angle between the applied magnetic field and crystalline axes is varied. Our measurements were performed on high quality single crystals in a superconducting magnet, and in pulsed magnetic fields up to 60 T, allowing us to observe orbits from several small Fermi surface pockets. We extract the cyclotron effective mass $m^{star}$ and frequency $F$ for these orbits and track their values as the field is rotated away from the c-axis. While a constant ratio of $m^{star}/F$ is observed for one orbit as expected for a parabolic band, a clear deviation is observed for another. We conclude that this deviation points to an orbit derived from a band with Dirac dispersion near the Fermi level.
A detailed elastic neutron scattering study of the structural and magnetic phase transitions in single-crystal SrFe$_2$As$_2$ reveals that the orthorhombic (O)-tetragonal (T) and the antiferromagnetic transitions coincide at $T_texttt{O}$ = $T_texttt
Neutron diffraction measurements have been carried out to investigate the magnetic form factor of the parent SrFe2As2 system of the iron-based superconductors. The general feature is that the form factor is approximately isotropic in wave vector, ind
An instrumentation problem with the signal acquisition at high frequencies was discovered and we no longer believe that the experimental data presented in the manuscript, showing a frequency enhancement of the elastoresistivity, are correct. After co
In order to investigate whether magnetism and superconductivity coexist in Co-doped SrFe$_2$As$_2$, we have prepared single crystals of SrFe$_{2-x}$Co$_x$As$_2$, $x$ = 0 and 0.4, and characterized them via X-ray diffraction, electrical resistivity in
We present a study of the Fermi surface of KFe$_2$As$_2$ single crystals. Quantum oscillations were observed in magnetostriction measured down to 50 mK and in magnetic fields $H$ up to 14 T. For $H parallel c$, the calculated effective masses are in