ترغب بنشر مسار تعليمي؟ اضغط هنا

Can Self Organized Critical Accretion Disks Generate a Log-normal Emission Variability in AGN?

104   0   0.0 ( 0 )
 نشر من قبل Chatief Kunjaya
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Active Galactic Nuclei (AGN), such as Seyfert galaxies, quasars, etc., show light variations in all wavelength bands, with various amplitude and in many time scales. The variations usually look erratic, not periodic nor purely random. Many of these objects also show lognormal flux distribution and RMS - flux relation and power law frequency distribution. So far, the lognormal flux distribution of black hole objects is only observational facts without satisfactory explanation about the physical mechanism producing such distribution in the accretion disk. One of the most promising models based on cellular automaton mechanism has been successful in reproducing PSD (Power Spectral Density) of the observed objects but could not reproduce lognormal flux distribution. Such distribution requires the existence of underlying multiplicative process while the existing SOC models are based on additive processes. A modified SOC model based on cellular automaton mechanism for producing lognormal flux distribution is presented in this paper. The idea is that the energy released in the avalanche and diffusion in the accretion disk is not entirely emitted instantaneously as in the original cellular automaton model. Some part of the energy is kept in the disk and thus increase its energy content so that the next avalanche will be in higher energy condition and will release more energy. The later an avalanche occurs, the more amount of energy is emitted to the observers. This can provide multiplicative effects to the flux and produces lognormal flux distribution.



قيم البحث

اقرأ أيضاً

120 - Patrick Hall , 2017
If the atmospheric density $rho_{atm}$ in the accretion disk of an active galactic nucleus (AGN) is sufficiently low, scattering in the atmosphere can produce a non-blackbody emergent spectrum. For a given bolometric luminosity, at ultraviolet and op tical wavelengths such disks have lower fluxes and apparently larger sizes as compared to disks that emit as blackbodies. We show that models in which $rho_{rm atm}$ is a sufficiently low fixed fraction of the interior density $rho$ can match the AGN STORM observations of NGC 5548 but produce disk spectral energy distributions that peak at shorter wavelengths than observed in luminous AGN in general. Thus, scattering atmospheres can contribute to the explanation for large inferred AGN accretion disk sizes but are unlikely to be the only contributor. In the appendix section, we present unified equations for the interior $rho$ and $T$ in gas pressure-dominated regions of a thin accretion disk.
Accretion disks around supermassive black holes in active galactic nuclei produce continuum radiation at ultraviolet and optical wavelengths. Physical processes in the accretion flow lead to stochastic variability of this emission on a wide range of timescales. We measure the optical continuum variability observed in 67 active galactic nuclei and the characteristic timescale at which the variability power spectrum flattens. We find a correlation between this timescale and the black hole mass, extending over the entire mass range of supermassive black holes. This timescale is consistent with the expected thermal timescale at the ultraviolet-emitting radius in standard accretion disk theory. Accreting white dwarfs lie close to this correlation, suggesting a common process for all accretion disks.
To investigate and specify the statistical properties of cosmological fields with particular attention to possible non-Gaussian features, accurate formulae for the bispectrum and the bispectrum covariance are required. The bispectrum is the lowest-or der statistic providing an estimate for non-Gaussianities of a distribution, and the bispectrum covariance depicts the errors of the bispectrum measurement and their correlation on different scales. Currently, there do exist fitting formulae for the bispectrum and an analytical expression for the bispectrum covariance, but the former is not very accurate and the latter contains several intricate terms and only one of them can be readily evaluated from the power spectrum of the studied field. Neglecting all higher-order terms results in the Gaussian approximation of the bispectrum covariance. We study the range of validity of this Gaussian approximation for two-dimensional non-Gaussian random fields. For this purpose, we simulate Gaussian and non-Gaussian random fields, the latter represented by log-normal fields and obtained directly from the former by a simple transformation. From the simulated fields, we calculate the power spectra, the bispectra, and the covariance from the sample variance of the bispectra, for different degrees of non-Gaussianity alpha, which is equivalent to the skewness on a given angular scale theta g. We find that the Gaussian approximation provides a good approximation for alpha<0.6 and a reasonably accurate approximation for alpha< 1, both on scales >8theta g. Using results from cosmic shear simulations, we estimate that the cosmic shear convergence fields are described by alpha<0.7 at theta g~4. We therefore conclude that the Gaussian approximation for the bispectrum covariance is likely to be applicable in ongoing and future cosmic shear studies.
Infrared spectroscopy of the H-alpha emission lines of a sub-sample of 19 high-redshift (0.8 < z < 2.3) Molonglo quasars, selected at 408 MHz, is presented. These emission lines are fitted with composite models of broad and narrow emission, which inc lude combinations of classical broad-line regions of fast-moving gas clouds lying outside the quasar nucleus, and/or a theoretical model of emission from an optically-thick, flattened, rotating accretion disk. All bar one of the nineteen sources are found to have emission consistent with the presence of an optically-emitting accretion disk, with the exception appearing to display complex emission including at least three broad components. Ten of the quasars have strong Bayesian evidence for broad-line emission arising from an accretion disk together with a standard broad-line region, selected in preference to a model with two simple broad lines. Thus the best explanation for the complexity required to fit the broad H-alpha lines in this sample is optical emission from an accretion disk in addition to a region of fast-moving clouds. We derive estimates of the angle between the rotation axis of the accretion disk and the line of sight. A weak correlation is found between the accretion disk angle and the logarithm of the low-frequency radio luminosity. This is direct, albeit tenuous, evidence for the receding torus model. Velocity shifts of the broad H-alpha components are analysed and the results found to be consistent with a two-component model comprising one single-peaked broad line emitted at the same redshift as the narrow lines, and emission from an accretion disk which appears to be preferentially redshifted with respect to the narrow lines for high-redshift sources and blueshifted relative to the narrow lines for low-redshift sources.
AGN with double-peaked narrow lines (DPAGN) may be caused by kiloparsec scale binary AGN, bipolar outflows, or rotating gaseous disks. We examine the class of DPAGN in which the two narrow line components have closely similar intensity as being espec ially likely to involve disks or jets. Two spectroscopic indicators support this likelihood. For DPAGN from Smith et al. (2010), the equal-peaked objects (EPAGN) have [Ne V]/[O III] ratios lower than for a control sample of non-double peaked AGN. This is unexpected for a pair of normal AGN in a galactic merger, but may be consistent with [O III] emission from a rotating ring with relatively little gas at small radii. Also, [O III]/H-beta ratios of the redshifted and blueshifted systems in the EPAGN are more similar to each other than in a control sample, suggestive of a single ionizing source and inconsistent with the binary interpretation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا