ﻻ يوجد ملخص باللغة العربية
Pressure-dependent, low temperature inelastic light (Raman) scattering measurements of KCuF$_3$ show that applied pressure above $P^{*} sim$ 7 kbar suppresses a previously observed structural phase transition temperature to zero temperature in KCuF$_3$, resulting in the development of a $omegasim$ 0 fluctuational (quasielastic) response near $T sim$ 0 K. This pressure-induced fluctuational response --- which we associate with slow fluctuations of the CuF$_6$ octahedral orientation --- is temperature independent and exhibits a characteristic fluctuation rate that is much larger than the temperature, consistent with quantum fluctuations of the CuF$_6$ octahedra. A model of pseudospin-phonon coupling provides a qualitative description of both the temperature- and pressure-dependent evolution of the Raman spectra of KCuF$_3$.
We explore the existence of the collective orbital excitations, orbitons, in the canonical orbital system KCuF$_3$. Using the Cu $L_3$-edge resonant inelastic X-ray scattering we show that the non-dispersive high-energy peaks result from the Cu$^{2+}
We report a $^{35}$Cl nuclear magnetic resonance study in the honeycomb lattice, $alpha$-RuCl$_3$, a material that has been suggested to potentially realize a Kitaev quantum spin liquid (QSL) ground state. Our results provide direct evidence that $al
The phase diagram of BaVS3 is studied under pressure using resistivity measurements. The temperature of the metal to nonmagnetic Mott insulator transition decreases under pressure, and vanishes at the quantum critical point p_cr=20kbar. We find two k
The perovskite antiferromagnetic ($T_{rm N}$ $sim$ 220 K) insulator EuNiO$_3$ undergoes at ambient pressure a metal-to-insulator transition at $T_{rm MI}$ = 460 K which is associated with a simultaneous orthorhombic-to-monoclinic distortion, leading
Resonant inelastic x-ray scattering (RIXS) is an extremely valuable tool for the study of elementary, including magnetic, excitations in matter. Latest developments of this technique mostly aimed at improving the energy resolution and performing pola