ترغب بنشر مسار تعليمي؟ اضغط هنا

The Quest for the Heaviest Uranium Isotope

64   0   0.0 ( 0 )
 نشر من قبل Stefan Schramm
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study Uranium isotopes and surrounding elements at very large neutron number excess. Relativistic mean field and Skyrme-type approaches with different parametrizations are used in the study. Most models show clear indications for isotopes that are stable with respect to neutron emission far beyond N=184 up to the range of around N=258.

قيم البحث

اقرأ أيضاً

305 - V.I. Isakov 2017
Electromagnetic properties of the deformed neutron-odd nucleus $^{229}$Th are investigated in the framework of the unified model, with primary emphasis upon the properties of the low-lying isomeric state.
The mass region with A~100 and Z~40 is known to experience a sudden onset of deformation. The presence of the subshell closure $Z=40$ makes feasible to create particle-hole excitations at a moderate excitation energy and, therefore, likely intruder s tates could be present in the low-lying spectrum. In other words, shape coexistence is expected to be a key ingredient to understand this mass region. The aim of this work is to describe excitation energies, transition rates, radii, and two-neutron separation energies for the even-even 94-110Zr nuclei and, moreover, to obtain information about wave functions and deformation. The interacting boson model with configuration mixing will be the framework to study the even-even Zr nuclei, considering only two types of configurations: 0particle-0hole and 2p-2h excitations. On one hand, the parameters appearing in the Hamiltonian and in the E2 transition operator are fixed trough a least-squares fit to the whole available experimental information. On the other hand, once the parameters have been fixed, the calculations allow to obtain a complete set of observables for the whole even-even Zr chain of isotopes. Spectra, transition rates, radii, $rho^2(E0)$, and two-neutron separation energies have been calculated and a good agreement with the experimental information has been obtained. Moreover, a detailed study of the wave function has been conducted and mean-field energy surfaces and deformation have been computed too. The importance of shape coexistence has been shown to correctly describe the A~100 mass area for even-even Zr nuclei. This work confirmed the rather spherical nature of the ground state of 94-98Zr and its deformed nature for 100-110Zr isotopes. The sudden onset of deformation in 100Zr is owing to the rapid lowering of a deformed (intruder) configuration which is high-lying in lighter isotopes.
The Facility for Rare Isotope Beams (FRIB) will be a world-leading laboratory for the study of nuclear structure, reactions and astrophysics. Experiments with intense beams of rare isotopes produced at FRIB will guide us toward a comprehensive descri ption of nuclei, elucidate the origin of the elements in the cosmos, help provide an understanding of matter in neutron stars, and establish the scientific foundation for innovative applications of nuclear science to society. FRIB will be essential for gaining access to key regions of the nuclear chart, where the measured nuclear properties will challenge established concepts, and highlight shortcomings and needed modifications to current theory. Conversely, nuclear theory will play a critical role in providing the intellectual framework for the science at FRIB, and will provide invaluable guidance to FRIBs experimental programs. This article overviews the broad scope of the FRIB theory effort, which reaches beyond the traditional fields of nuclear structure and reactions, and nuclear astrophysics, to explore exciting interdisciplinary boundaries with other areas. keywords{Nuclear Structure and Reactions. Nuclear Astrophysics. Fundamental Interactions. High Performance Computing. Rare Isotopes. Radioactive Beams.
To find candidates for long-lived high-K isomers in even-even Z=106-112 superheavy nuclei we study dominant alpha-decay channel of two- and four-quasi-particle configurations at a low excitation. Energies are calculated within the microscopic - macro scopic approach with the deformed Woods-Saxon potential. Configurations are fixed by a standard blocking procedure and their energy found by a subsequent minimization over deformations. Different excitation energies of a high-K configuration in parent and daughter nucleus seem particularly important for a hindrance of the alpha-decay. A strong hindrance is found for some four-quasi-particle states, particularly $K^{pi} = 20^{+}$ and/or $19^{+}$ states in $^{264-270}$Ds. Contrary to what was suggested in experimental papers, it is rather a proton configuration that leads to this strong hindrance. If not shortened by the electromagnetic decay, alpha half-lives of $sim$ 1 s could open new possibilities for studies of chemical/atomic properties of related elements.
A new $alpha$-emitting isotope $^{214}$U, produced by fusion-evaporation reaction $^{182}$W($^{36}$Ar, 4n)$^{214}$U, was identified by employing the gas-filled recoil separator SHANS and recoil-$alpha$ correlation technique. More precise $alpha$-deca y properties of even-even nuclei $^{216,218}$U were also measured in reactions of $^{40}$Ar, $^{40}$Ca with $^{180, 182, 184}$W targets. By combining the experimental data, improved $alpha$-decay reduced widths $delta^2$ for the even-even Po--Pu nuclei in the vicinity of magic neutron number $N=126$ were deduced. Their systematic trends are discussed in terms of $N_{p}N_{n}$ scheme in order to study the influence of proton-neutron interaction on $alpha$ decay in this region of nuclei. It is strikingly found that the reduced widths of $^{214,216}$U are significantly enhanced by a factor of two as compared with the $N_{p}N_{n}$ systematics for the $84 leq Z leq 90$ and $N<126$ even-even nuclei. The abnormal enhancement is interpreted by the strong monopole interaction between the valence protons and neutrons occupying the $pi 1f_{7/2}$ and $ u 1f_{5/2}$ spin-orbit partner orbits, which is supported by a large-scale shell model calculation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا