ترغب بنشر مسار تعليمي؟ اضغط هنا

Fragment Production and Survival in Irradiated Disks: A Comprehensive Cooling Criterion

62   0   0.0 ( 0 )
 نشر من قبل Kaitlin Kratter
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Accretion disks that become gravitationally unstable can fragment into stellar or sub-stellar companions. The formation and survival of these fragments depends on the precarious balance between self-gravity, internal pressure, tidal shearing, and rotation. Disk fragmentation depends on two key factors (1) whether the disk can get to the fragmentation boundary of Q=1, and (2) whether fragments can survive for many orbital periods. Previous work suggests that to reach Q=1, and have fragments survive, a disk must cool on an orbital timescale. Here we show that disks heated primarily by external irradiation always satisfy the standard cooling time criterion. Thus even though irradiation heats disks, and makes them more stable in general, once they reach the fragmentation boundary, they fragment more easily. We derive a new cooling criterion that determines fragment survival, and calculate a pressure modified Hill radius, which sets the maximum size of pressure-supported objects in a Keplerian disk. We conclude that fragmentation in protostellar disks might occur at slightly smaller radii than previously thought, and recommend tests for future simulations that will better predict the outcome of fragmentation in real disks.

قيم البحث

اقرأ أيضاً

86 - R. Meijerink , G. Aresu , I. Kamp 2012
Context. Planets are thought to eventually form from the mostly gaseous (~99% of the mass) disks around young stars. The density structure and chemical composition of protoplanetary disks are affected by the incident radiation field at optical, FUV, and X-ray wavelengths, as well as by the dust properties. Aims. The effect of FUV and X-rays on the disk structure and the gas chemical composition are investigated. This work forms the basis of a second paper, which discusses the impact on diagnostic lines of, e.g., C+, O, H2O, and Ne+ observed with facilities such as Spitzer and Herschel. Methods. A grid of 240 models is computed in which the X-ray and FUV luminosity, minimum grain size, dust size distribution, and surface density distribution are varied in a systematic way. The hydrostatic structure and the thermo-chemical structure are calculated using ProDiMo. Results. The abundance structure of neutral oxygen is stable to changes in the X-ray and FUV luminosity, and the emission lines will thus be useful tracers of the disk mass and temperature. The C+ abundance distribution is sensitive to both X-rays and FUV. The radial column density profile shows two peaks, one at the inner rim and a second one at a radius r=5-10 AU. Ne+ and other heavy elements have a very strong response to X-rays, and the column density in the inner disk increases by two orders of magnitude from the lowest (LX = 1e29 erg/s) to the highest considered X-ray flux (LX = 1e32 erg/s). FUV confines the Ne+ ionized region to areas closer to the star at low X-ray luminosities (LX = 1e29 erg/s). H2O abundances are enhanced by X-rays due to higher temperatures in the inner disk and higher ionization fractions in the outer disk. The line fluxes and profiles are affected by the effects on these species, thus providing diagnostic value in the study of FUV and X-ray irradiated disks around T Tauri stars. (abridged)
Most of the mass in protoplanetary disks is in the form of gas. The study of the gas and its diagnostics is of fundamental importance in order to achieve a detailed description of the thermal and chemical structure of the disk. The radiation from the central star (from optical to X-ray wavelengths) and viscous accretion are the main source of energy and dominates the disk physics and chemistry in its early stages. This is the environment in which the first phases of planet formation will proceed. We investigate how stellar and disk parameters impact the fine-structure cooling lines [NeII], [ArII], [OI], [CII] and H2O rotational lines in the disk. These lines are potentially powerful diagnostics of the disk structure and their modelling permits a thorough interpretation of the observations carried out with instrumental facilities such as Spitzer and Herschel. Following Aresu et al. (2011), we computed a grid of 240 disk models, in which the X-ray luminosity, UV-excess luminosity, minimum dust grain size, dust size distribution power law and surface density distribution power law, are systematically varied. We solve self-consistently for the disk vertical hydrostatic structure in every model and apply detailed line radiative transfer to calculate line fluxes and profiles for a series of well known mid- and far-infrared cooling lines. The [OI] 63 micron line flux increases with increasing FUV luminosity when Lx < 1e30 erg/s, and with increasing X-ray luminosity when LX > 1e30 erg/s. [CII] 157 micron is mainly driven by FUV luminosity via C+ production, X-rays affect the line flux to a lesser extent. [NeII] 12.8 micron correlates with X-rays; the line profile emitted from the disk atmosphere shows a double-peaked component, caused by emission in the static disk atmosphere, next to a high velocity double-peaked component, caused by emission in the very inner rim. (abridged)
We present a mechanism for the crystalline silicate production associated with the formation and subsequent destruction of massive fragments in young protostellar disks. The fragments form in the embedded phase of star formation via disk fragmentatio n at radial distances ga 50-100 AU and anneal small amorphous grains in their interior when the gas temperature exceeds the crystallization threshold of ~ 800 K. We demonstrate that fragments that form in the early embedded phase can be destroyed before they either form solid cores or vaporize dust grains, thus releasing the processed crystalline dust into various radial distances from sub-AU to hundred-AU scales. Two possible mechanisms for the destruction of fragments are the tidal disruption and photoevaporation as fragments migrate radially inward and approach the central star and also dispersal by tidal torques exerted by spiral arms. As a result, most of the crystalline dust concentrates to the disk inner regions and spiral arms, which are the likely sites of fragment destruction.
In Spitzer observations of Tauri stars and their disks, PAH features are detected in less than 10% of the objects, although the stellar photosphere is sufficiently hot to excite PAHs. To explain the deficiency, we discuss PAH destruction by photons a ssuming that the star has beside its photospheric emission also a FUV, an EUV and an X-ray component with fractional luminosity of 1%, 0.1% and 0.025%, respectively. As PAH destruction process we consider unimolecular dissociation and present a simplified scheme to estimate the location from the star where the molecules become photo-stable. We find that soft photons with energies below ~20eV dissociate PAHs only up to short distances from the star (r < 1AU); whereas dissociation by hard photons (EUV and X-ray) is so efficient that it would destroy all PAHs (from regions in the disk where they could be excited). As a possible path for PAH survival we suggest turbulent motions in the disk. They can replenish PAHs or remove them from the reach of hard photons. For standard disk models, where the surface density changes like 1/r and the mid plane temperature like 1/r^{0.5}, the critical vertical velocity for PAH survival is proportional to r^{-3/4} and equals ~5m/s at 10AU which is in the range of expected velocities in the surface layer. The uncertainty in the parameters is large enough to explain both detection and non-detection of PAHs. Our approximate treatment also takes into account the presence of gas which, at the top of the disk, is ionized and at lower levels neutral.
The increased sensitivity of millimeter-wave facilities now makes possible the detection of low amounts of gas in debris disks. Some of the gas-rich debris disks harbor peculiar properties, with possible pristine gas and secondary generated dust. The origin of the gas in these hybrid disks is strongly debated and the current sample is too sparse to understand this phenomenon. More detections are necessary to increase the statistics on this population. Lying at the final stages of evolution of proto-planetary disks and at the beginning of the debris disk phase, these objects could provide new insight into the processes involved in the making of planetary systems. We carried out a deep survey of the 12CO(2-1) and 12CO(3-2) lines with the APEX and IRAM radiotelescopes in young debris disks selected according to hybrid disk properties. The survey is complemented with a bibliographic study of the ratio between the emission of the gas and the continuum (S_CO/F_cont) in CTTS, Herbig Ae, WTTS, hybrid, and debris disks. Our sub-mm survey comprises 25 stars, including 17 new targets, and we increase the sensitivity limit by a factor 2 on eight sources compared to similar published studies. We report a 4sigma tentative detection of a double-peaked 12CO(2-1) line around HD23642; an eclipsing binary located in the Pleiades. We also reveal a correlation between the emission of the CO gas and the dust continuum from CTTS, Herbig Ae and few debris disks. The observed trend of the gas to dust flux ratio suggests a concurrent dissipation of the dust and gas components. Hybrid disks systematically lie above this trend, suggesting that these systems may witness a transient phase, when the dust has evolved more rapidly than the gas, with a flux ratio S_CO/F_cont enhanced by a factor of between 10 and 100 compared to standard (proto-)planetary disks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا