ترغب بنشر مسار تعليمي؟ اضغط هنا

A luminous quasar at a redshift of z = 7.085

139   0   0.0 ( 0 )
 نشر من قبل Daniel Mortlock
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The intergalactic medium was not completely reionized until approximately a billion years after the Big Bang, as revealed by observations of quasars with redshifts of less than 6.5. It has been difficult to probe to higher redshifts, however, because quasars have historically been identified in optical surveys, which are insensitive to sources at redshifts exceeding 6.5. Here we report observations of a quasar (ULAS J112001.48+064124.3) at a redshift of 7.085, which is 0.77 billion years after the Big Bang. ULAS J1120+0461 had a luminosity of 6.3x10^13 L_Sun and hosted a black hole with a mass of 2x10^9 M_Sun (where L_Sun and M_Sun are the luminosity and mass of the Sun). The measured radius of the ionized near zone around ULAS J1120+0641 is 1.9 megaparsecs, a factor of three smaller than typical for quasars at redshifts between 6.0 and 6.4. The near zone transmission profile is consistent with a Ly alpha damping wing, suggesting that the neutral fraction of the intergalactic medium in front of ULAS J1120+0641 exceeded 0.1.



قيم البحث

اقرأ أيضاً

We present 1-2 GHz Very Large Array A-configuration continuum observations on the highest redshift quasar known to date, the $z=7.085$ quasar ULAS J112001.48+064124.3. The results show no radio continuum emission at the optical position of the quasar or its vicinity at a level of $geq 3sigma$ or $23.1 mu$Jy beam$^{-1}$. This $3sigma$ limit corresponds to a rest frame 1.4 GHz luminosity density limit of $L_{ u,1.4,GHz} < 1.76 times 10^{24}$ W Hz$^{-1}$ for a spectral index of $alpha=0$, and $L_{ u,1.4,GHz} < 1.42 times 10^{25}$ W Hz$^{-1}$ for a spectral index of $alpha=-1$. The rest-frame 1.4 GHz luminosity limits are $L_{rad} < 6.43 times 10^6 L_{odot}$ and $L_{rm rad} < 5.20 times 10^7 L_{odot}$ for $alpha=0$ and $alpha=-1$, respectively. The derived limits for the ratio of the rest frame 1.4 GHz luminosity density to the $B$-band optical luminosity density are $Rrlap{}_{1.4}^{*} < 0.53$ and $< 4.30$ for the above noted spectral indices, respectively. Given our upper limits on the radio continuum emission and the radio-to-optical luminosity ratio, we conclude that this quasar is radio-quiet and located at the low end of the radio quiet distribution of high redshift ($z gtrsim 6$) quasars.
Distant quasars are unique tracers to study the formation of the earliest supermassive black holes (SMBHs) and the history of cosmic reionization. Despite extensive efforts, only two quasars have been found at $zge7.5$, due to a combination of their low spatial density and the high contamination rate in quasar selection. We report the discovery of a luminous quasar at $z=7.642$, J0313$-$1806, the most distant quasar yet known. This quasar has a bolometric luminosity of $3.6times10^{13} L_odot$. Deep spectroscopic observations reveal a SMBH with a mass of $(1.6pm0.4) times10^9M_odot$ in this quasar. The existence of such a massive SMBH just $sim$670 million years after the Big Bang challenges significantly theoretical models of SMBH growth. In addition, the quasar spectrum exhibits strong broad absorption line (BAL) features in CIV and SiIV, with a maximum velocity close to 20% of the speed of light. The relativistic BAL features, combined with a strongly blueshifted CIV emission line, indicate that there is a strong active galactic nucleus (AGN) driven outflow in this system. ALMA observations detect the dust continuum and [CII] emission from the quasar host galaxy, yielding an accurate redshift of $7.6423 pm 0.0013$ and suggesting that the quasar is hosted by an intensely star-forming galaxy, with a star formation rate of $rmsim 200 ~M_odot ~yr^{-1}$ and a dust mass of $sim7times10^7~M_odot$. Followup observations of this reionization-era BAL quasar will provide a powerful probe of the effects of AGN feedback on the growth of the earliest massive galaxies.
259 - James S. Bolton 2011
The quasar ULAS J1120+0641 at redshift z=7.085 has a highly ionised near zone which is smaller than those around quasars of similar luminosity at z~6. The spectrum also exhibits evidence for a damping wing extending redward of the systemic Lya redshi ft. We use radiative transfer simulations in a cosmological context to investigate the implications for the ionisation state of the inhomogeneous IGM surrounding this quasar. Our simulations show that the transmission profile is consistent with an IGM in the vicinity of the quasar with a volume averaged HI fraction of f_HI>0.1 and that ULAS J1120+0641 has been bright for 10^6--10^7 yr. The observed spectrum is also consistent with smaller IGM neutral fractions, f_HI ~ 10^-3--10-4, if a damped Lya system in an otherwise highly ionised IGM lies within 5 proper Mpc of the quasar. This is, however, predicted to occur in only ~5 per cent of our simulated sight-lines for a bright phase of 10^6--10^7 yr. Unless ULAS J1120+0641 grows during a previous optically obscured phase, the low age inferred for the quasar adds to the theoretical challenge of forming a 2x10^9 M_sol black hole at this high redshift.
In this work we report the discovery of the hyperluminous galaxy HELP_J100156.75+022344.7 at the photometric redshift of z ~ 4.3. The galaxy was discovered in the Cosmological Evolution Survey (COSMOS) field, one of the fields studied by the Herschel Extragalactic Legacy Project (HELP). We present the spectral energy distribution (SED) of the galaxy and fit it with the CYprus models for Galaxies and their NUclear Spectra (CYGNUS) multi-component radiative transfer models. We find that its emission is dominated by an obscured quasar with a predicted total 1-1000um luminosity of $3.91^{+1.69}_{-0.55} times 10^{13} L_odot$ and an active galactic nucleus (AGN) fraction of ~89%. We also fit HELP_J100156.75+022344.7 with the Code Investigating GALaxy Emission (CIGALE) code and find a similar result. This is only the second z > 4 hyperluminous obscured quasar discovered to date. The discovery of HELP_J100156.75+022344.7 in the ~ 2deg^2 COSMOS field implies that a large number of obscured hyperluminous quasars may lie in the HELP fields which cover ~ 1300deg^2. If this is confirmed, tension between supermassive black hole evolution models and observations will be alleviated. We estimate the space density of objects like HELP_J100156.75+022344.7 at z ~ 4.5 to be $sim 1.8 times 10^{-8}$Mpc$^{-3}$. This is slightly higher than the space density of coeval hyperluminous optically selected quasars suggesting that the obscuring torus in z > 4 quasars may have a covering factor $gtrsim 50%$.
Distant luminous quasars provide important information on the growth of the first supermassive black holes, their host galaxies and the epoch of reionization. The identification of quasars is usually performed through detection of their Lyman-$alpha$ line redshifted to $sim$ 0.9 microns at z>6.5. Here, we report the discovery of a very Lyman-$alpha$ luminous quasar, PSO J006.1240+39.2219 at redshift z=6.618, selected based on its red colour and multi-epoch detection of the Lyman-$alpha$ emission in a single near-infrared band. The Lyman-$alpha$-line luminosity of PSO J006.1240+39.2219 is unusually high and estimated to be 0.8$times$10$^{12}$ Solar luminosities (about 3% of the total quasar luminosity). The Lyman-$alpha$ emission of PSO J006.1240+39.2219 shows fast variability on timescales of days in the quasar rest frame, which has never been detected in any of the known high-redshift quasars. The high luminosity of the Lyman-$alpha$ line, its narrow width and fast variability resemble properties of local Narrow-Line Seyfert 1 galaxies which suggests that the quasar is likely at the active phase of the black hole growth accreting close or even beyond the Eddington limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا