ﻻ يوجد ملخص باللغة العربية
We present radio and optical analysis of a sample of Low Luminosity Compact (LLC) objects, selected from FIRST survey and observed with MERLIN at L-band and C-band. The main criterion used for selection was luminosity of the objects and approximately one third of the CSS sources from the new sample have a value of radio luminosity comparable to FR,Is.The analysis of a radio properties of LLC sources show they occupy the space in radio power versus linear size diagram below the main evolutionary path of radio objects. We suggest that many of them might be short-lived objects, and their radio emission may be disrupted several times before becoming FR,IIs. The optical analysis of the LLC sources were made based on the available SDSS images and spectra. We have classified the sources as high and low excitation galaxies (HEG and LEG, respectively). The optical and radio properties of the LLC sample are in general consistent with brighter CSSs and large-scale radio sources. However, when LLC are added to the other samples, HEG and LEG seem to follow independent, parallel evolutionary tracks. LLC and luminous CSS behave like FR,II sources, while FR,I seem to belong to a different group of objects, concerning ionization mechanisms. Based on our results, we propose the independent, parallel evolutionary tracks for HEG and LEG sources, evolving from GPS - CSS - FR.
We apply the V/Vm test to a subsample of compact steep-spectrum sources from a complete sample of radio sources selected at 2.7 GHz. We find that the <V/Vm> has a value intermediate between those found for samples of extended steep-spectrum sources a
The nearby low-luminosity active galactic nucleus (LLAGN) NGC 4258 has a weak radio continuum emission at the galactic center. Quasi-simultaneous multi-frequency observations using the Very Large Array (VLA) from 5 GHz (6 cm) to 22 GHz (1.3 cm) showe
We present the evolutionary properties and luminosity functions of the radio sources belonging to the Chandra Deep Field South VLA survey, which reaches a flux density limit at 1.4 GHz of 43 microJy at the field center and redshift ~5, and which incl
(abridged) We present 8.2m VLT spectroscopic observations of 28 HII regions in 16 emission-line galaxies and 3.6m ESO telescope spectroscopic observations of 38 HII regions in 28 emission-line galaxies. These emission-line galaxies were selected main
We investigated the pulsar radio luminosity ($L$), emission efficiency (ratio of radio luminosity to its spin-down power $dot{E}$), and death line in the diagram of magnetic field (B) versus spin period (P), and found that the dependence of pulsar ra