ترغب بنشر مسار تعليمي؟ اضغط هنا

The Lx-Tvir relation in galaxy clusters: Effects of radiative cooling and AGN heating

125   0   0.0 ( 0 )
 نشر من قبل Rupal Mittal
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed investigation of the X-ray luminosity (Lx)-gas temperature (Tvir) relation of the complete X-ray flux-limited sample of the 64 brightest galaxy clusters in the sky (HIFLUGCS). We study the influence of two astrophysical processes, active galactic nuclei (AGN) heating and intracluster medium (ICM) cooling, on the Lx-Tvir relation, simultaneously for the first time. We determine best-fit relations for different subsamples using the cool-core strength and the presence of central radio activity as selection criteria. We find the strong cool-core clusters (SCCs) with short cooling times (< 1Gyr)to display the steepest relation (Lx ~ Tvir^{3.33}) and the non-cool-core clusters (NCCs) with long cooling times (> 7.7Gyr) to display the shallowest (Lx ~ Tvir^{2.42}). This has the simple implication that on the high-mass scale (Tvir > 2.5keV) the steepening of the Lx-Tvir relation is mainly due to the cooling of the intracluster medium gas. We propose that ICM cooling and AGN heating are both important in shaping the Lx-Tvir relation but on different length-scales. While our study indicates that ICM cooling dominates on cluster scales (Tvir > 2.5keV), we speculate that AGN heating dominates the scaling relation in poor clusters and groups (Tvir < 2.5keV). The intrinsic scatter about the Lx-Tvir relation in X-ray luminosity for the whole sample is 45.4% and varies from a minimum of 34.8% for weak cool-core clusters to a maximum of 59.4% for clusters with no central radio source. We find that after excising the cooling region, the scatter in the Lx-Tvir relation drops from 45.4% to 39.1%, implying that the cooling region contributes ~ 27% to the overall scatter. Lastly, we find the true SCC fraction to be 25% lower than the observed one and the true normalizations of the Lx-Tvir relations to be lower by 12%, 7%, and 17% for SCC, WCC, and NCC clusters, respectively. [abridged]



قيم البحث

اقرأ أيضاً

It is now widely accepted that heating processes play a fundamental role in galaxy clusters, struggling in an intricate but fascinating `dance with its antagonist, radiative cooling. Last generation observations, especially X-ray, are giving us tiny hints about the notes of this endless ballet. Cavities, shocks, turbulence and wide absorption-lines indicate the central active nucleus is injecting huge amount of energy in the intracluster medium. However, which is the real dominant engine of self-regulated heating? One of the model we propose are massive subrelativistic outflows, probably generated by a wind disc or just the result of the entrainment on kpc scale by the fast radio jet. Using a modified version of AMR code FLASH 3.2, we explored several feedback mechanisms which self-regulate the mechanical power. Two are the best schemes that answer our primary question, id est quenching cooling flow and at the same time preserving a cool core appearance for a long term evolution (7 Gyr): one more explosive (with efficiencies 0.005 - 0.01), triggered by central cooled gas, and the other gentler, ignited by hot gas Bondi accretion (with efficiency 0.1). These three-dimensional simulations show that the total energy injected is not the key aspect, but the results strongly depend on how energy is given to the ICM. We follow the dynamics of best model (temperature, density, SB maps and profiles) and produce many observable predictions: buoyant bubbles, ripples, turbulence, iron abundance maps and hydrostatic equilibrium deviation. We present a deep discussion of merits and flaws of all our models, with a critical eye towards observational concordance.
We have carried out an intensive study of the AGN heating-ICM cooling network by comparing various cluster parameters of the HIFLUGCS sample to the integrated radio luminosity of the central AGN, L_R, defined as the total synchrotron power between 10 MHz and 15 GHz. We adopt the central cooling time, t_cool, as the diagnostic to ascertain cooling properties of the clusters and classify clusters with t_cool < 1 Gyr as strong cooling core (SCC) clusters, with 1 Gyr < t_cool <7.7 Gyr as weak cooling core (WCC) clusters and with t_cool > 7.7 Gyr as non-cooling core (NCC) clusters. We find 48 out of 64 clusters (75%) contain cluster center radio sources (CCRS) cospatial with or within 50 h^{-1}_{71} kpc of the X-ray peak emission. Further, we find that the probability of finding a CCRS increases from 45% to 67% to 100% for NCC, WCC and SCC clusters, respectively, suggesting an AGN-feedback machinery in SCC clusters which regulates the cooling in the central regions. We find L_R in SCC clusters depends strongly on the cluster scale such that more massive clusters harbor more powerful radio AGN. The same trend is observed between L_R and the classical mass deposition rate, MDR, albeit much stronger, in SCC and partly also in WCC clusters. We also perform correlations of the 2MASS K-band luminosity of the brightest cluster galaxy, L_BCG, with L_R and cluster parameters. We invoke the relation between L_BCG and the black hole mass, M_BH, and find a surprisingly tight correlation between M_BH and L_R for SCC clusters. We find also an excellent correlation of L_BCG with M500 and L_X for the entire sample; however, SCC clusters show a tighter trend in both the cases. We discuss the plausible reasons behind these scaling relations in the context of cooling flows and AGN feedback. [Abridged]
The discrepancy between expected and observed cooling rates of X-ray emitting gas has led to the {it cooling flow problem} at the cores of clusters of galaxies. A variety of models have been proposed to model the observed X-ray spectra and resolve th e cooling flow problem, which involves heating the cold gas through different mechanisms. As a result, realistic models of X-ray spectra of galaxy clusters need to involve both heating {it and} cooling mechanisms. In this paper, we argue that the heating time-scale is set by the magnetohydrodynamic (MHD) turbulent viscous heating for the Intracluster plasma, parametrised by the Shakura-Sunyaev viscosity parameter, $alpha$. Using a cooling+heating flow model, we show that a value of $alphasimeq 0.05$ (with 10% scatter) provides improved fits to the X-ray spectra of cooling flow, while at the same time, predicting reasonable cooling efficiency, $epsilon_{cool} = 0.33^{+0.63}_{-0.15}$. Our inferred values for $alpha$ based on X-ray spectra are also in line with direct measurements of turbulent pressure in simulations and observations of galaxy clusters. This simple picture unifies astrophysical accretion, as a balance of MHD turbulent heating and cooling, across more than 16 orders of magnitudes in scale, from neutron stars to galaxy clusters.
Observations support the view that feedback, in the form of radio outbursts from active nuclei in central galaxies, prevents catastrophic cooling of gas and rapid star formation in many groups and clusters of galaxies. Variations in jet power drive a succession of weak shocks that can heat regions close to the active galactic nuclei (AGN). On larger scales, shocks fade into sound waves. The Braginskii viscosity determines a well-defined sound damping rate in the weakly magnetized intracluster medium (ICM) that can provide sufficient heating on larger scales. It is argued that weak shocks and sound dissipation are the main means by which radio AGN heat the ICM, in which case, the power spectrum of AGN outbursts plays a central role in AGN feedback.
108 - L. Birzan 2009
Chandra X-ray Observatory has revealed X-ray cavities in many nearby cooling flow clusters. The cavities trace feedback from the central active galactic nulceus (AGN) on the intracluster medium (ICM), an important ingredient in stabilizing cooling fl ows and in the process of galaxy formation and evolution. But, the prevalence and duty cycle of such AGN outbursts is not well understood. To this end, we study how the cooling is balanced by the cavity heating for a complete sample of clusters (the Brightest 55 clusters of galaxies, hereafter B55). In the B55, we found 33 cooling flow clusters, 20 of which have detected X-ray bubbles in their ICM. Among the remaining 13, all except Ophiuchus could have significant cavity power yet remain undetected in existing images. This implies that the duty cycle of AGN outbursts with significant heating potential in cooling flow clusters is at least 60 % and could approach 100 %, but deeper data is required to constrain this further.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا