ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-frequency observations of SWIFT J1626.6-5156

105   0   0.0 ( 0 )
 نشر من قبل Pablo Reig
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Reig n




اسأل ChatGPT حول البحث

SWIFT J1626.6-5156 is an X-ray pulsar that was discovered in December 2005 during an X-ray outburst. Although the X-ray data suggest that the system is a high-mass X-ray binary, very little information exists on the nature of the optical counterpart. We have analysed all RXTE observations since its discovery, archived optical spectroscopic and photometric data and obtained for the first time near-IR spectra. The K-band spectrum shows HeI 20581 A and HI 21660 A (Brackett-gamma) in emission, which confine the spectral type of the companion to be earlier than B2.5. The H-band spectrum exhibits the HI Br-18-11 recombination series in emission. The most prominent feature of the optical band spectrum is the strong emission of the Balmer line Halpha. The 4000-5000 A spectrum contains HeII and numerous HeI ines in absorption, indicating an early B-type star. The source shows three consecutive stages characterised by different types of variability in the X-ray band: a smooth decay after the peak of a large outburst, large-amplitude flaring variability (reminiscent of type I oytbursts) and quiescence. We observed that the spectrum becomes softer as the flux decreases and that this is a common characteristic of the X-ray emission for all observing epochs. An emission line feature at ~6.5 keV is also always present. The X-ray/optical/IR continuum and spectral features are typical of an accreting X-ray pulsar with an early-type donor. The long-term X-ray variability is also characteristic of hard X-ray transients. We conclude that SWIFT J1626.6-5156 is a Be/X-ray binary with a B0Ve companion located at a distance of ~10 kpc.



قيم البحث

اقرأ أيضاً

124 - A.Baykal 2010
We present the discovery of the orbital period of Swift J1626.6-5156. Since its discovery in 2005, the source has been monitored with Rossi X-ray Timing Explorer, especially during the early stage of the outburst and into the X-ray modulating episode . Using a data span of $sim$700 days, we obtain the orbital period of the system as 132.9 days. We find that the orbit is close to a circular shape with an eccentricity 0.08, that is one of the smallest among Be/X-ray binary systems. Moreover, we find that the timescale of the X-ray modulations varied, which led to earlier suggestions of orbital periods at about a third and half of the orbital period of Swift J1626.6-5156.
200 - P. Reig 2008
We have performed a timing and spectral analysis of the X-ray pulsar SWIFT J1626.6-5156 during a major X-ray outburst in order to unveil its nature and investigate its flaring activity. Epoch- and pulse-folding techniques were used to derive the spin period. Time-average and pulse-phase spectroscopy were employed to study the spectral variability in the flare and out-of-flare states and energy variations with pulse phase. Power spectra were obtained to investigate the periodic and aperiodic variability. Two large flares, with a duration of ~450 seconds were observed on 24 and 25 December 2005. During the flares, the X-ray intensity increased by a factor of 3.5, while the peak-to-peak pulsed amplitude increased from 45% to 70%. A third, smaller flare of duration ~180 s was observed on 27 December 2005. The flares seen in SWIFT J1626.6-5156 constitute the shortest events of this kind ever reported in a high-mass X-ray binary. In addition to the flaring activity, strong X-ray pulsations with Pspin=15.3714+-0.0003 s characterise the X-ray emission in SWIFT J1626.6-5156. After the major outburst, the light curve exhibits strong long-term variations modulated with a 45-day period. We relate this modulation to the orbital period of the system or to a harmonic. Power density spectra show, in addition to the harmonic components of the pulsation, strong band-limited noise with an integrated 0.01-100 Hz fractional rms of around 40% that increased to 64% during the flares. A weak QPO (fractional rms 4.7%) with characteristic frequency of 1 Hz was detected in the non-flare emission. The timing (short X-ray pulsations, long orbital period) and spectral (power-law with cut off energy and neutral iron line) properties of SWIFT J1626.6-5156 are characteristic of Be/X-ray binaries.
Magnetars are a promising candidate for the origin of Fast Radio Bursts (FRBs). The detection of an extremely luminous radio burst from the Galactic magnetar SGR J1935+2154 on 2020 April 28 added credence to this hypothesis. We report on simultaneous and non-simultaneous observing campaigns using the Arecibo, Effelsberg, LOFAR, MeerKAT, MK2 and Northern Cross radio telescopes and the MeerLICHT optical telescope in the days and months after the April 28 event. We did not detect any significant single radio pulses down to fluence limits between 25 mJy ms and 18 Jy ms. Some observing epochs overlapped with times when X-ray bursts were detected. Radio images made on four days using the MeerKAT telescope revealed no point-like persistent or transient emission at the location of the magnetar. No transient or persistent optical emission was detected over seven days. Using the multi-colour MeerLICHT images combined with relations between DM, NH and reddening we constrain the distance to SGR J1935+2154, to be between 1.5 and 6.5 kpc. The upper limit is consistent with some other distance indicators and suggests that the April 28 burst is closer to two orders of magnitude less energetic than the least energetic FRBs. The lack of single-pulse radio detections shows that the single pulses detected over a range of fluences are either rare, or highly clustered, or both. It may also indicate that the magnetar lies somewhere between being radio-quiet and radio-loud in terms of its ability to produce radio emission efficiently.
We report simultaneous multi-frequency observations of the blazar PG 1553+113, that were carried out in March-April 2008. Optical, X-ray, high-energy (HE; greater than 100 MeV) gamma-ray, and very-high- energy (VHE; greater than 100 GeV) gamma-ray da ta were obtained with the KVA, REM, RossiXTE/ASM, AGILE and MAGIC telescopes. This is the first simultaneous broad-band (i.e., HE+VHE) gamma-ray observation of a blazar. The source spectral energy distribution derived combining these data shows the usual double-peak shape, and is interpreted in the framework of a synchrotron-self-Compton model.
108 - S. Sahiner 2015
We present timing and spectral analysis of emph{Swift}$-$XRT and emph{RXTE}$-$PCA observations of the transient Be/X-ray pulsar SWIFT J0513.4--6547 during its outburst in 2009 and its rebrightening in 2014. From 2009 observations, short term spin-up rate of the source after the peak of the outburst is found to have about half of the value measured at the peak of the outburst by Coe et al. When the source is quiescent between 2009 and 2014, average spin-down rate of the source is measured to be $sim 1.52 times 10^{-12}$ Hz s$^{-1}$ indicating a surface dipole magnetic field of $sim 1.5 times 10^{13}$ Gauss assuming a propeller state. From 2014 observations, short term spin-down rate of the source is measured to be about two orders smaller than this long-term spin-down rate. The orbit of the source is found to be circular which is atypical for transient Be/X-ray binary systems. Hardness ratios of the source correlate with the X-ray luminosity up to $8.4times 10^{36}$ erg s$^{-1}$ in 3-10 keV band, whereas for higher luminosities hardness ratios remain constant. Pulsed fractions are found to be correlated with the source flux. Overall emph{Swift}$-$XRT and emph{RXTE}$-$PCA energy spectrum of the source fit equally well to a model consisting of blackbody and power law, and a model consisting of a power law with high energy cut-off. From the pulse phase resolved spectra and pulse phase resolved hardness ratios obtained using emph{RXTE}$-$PCA, it is shown that spectrum is softer for the phases between the two peaks of the pulse.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا