ترغب بنشر مسار تعليمي؟ اضغط هنا

EBL studies with ground-based VHE gamma-ray detectors: Current status and potential of next-generation instruments

37   0   0.0 ( 0 )
 نشر من قبل Martin Raue
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Martin Raue




اسأل ChatGPT حول البحث

The diffuse meta-galactic radiation field at ultraviolet to infrared wavelengths - commonly labeled extragalactic background light (EBL) - contains the integrated emission history of the universe. Difficult to access via direct observations, indirect constraints on its density can be derived through observations of very-high energy (VHE; E>100 GeV) gamma-rays from distant sources: the VHE photons are attenuated via pair-production with the low energy photons from the EBL, leaving a distinct imprint in the VHE spectra measured on earth. Discoveries made with current-generation VHE observatories like H.E.S.S., MAGIC and VERITAS enabled strong constraints on the density of the EBL, especially in the near-infrared. Here, the constrains on the EBL density from such ground based VHE observations will be briefly reviewed and the potential of the next-generation instruments to improve on these limits will be discussed.

قيم البحث

اقرأ أيضاً

The diffuse meta-galactic radiation field at ultraviolet to infrared wavelengths - commonly labeled extragalactic background light (EBL) - contains the integrated emission history of the universe. Difficult to access via direct observations indirect constraints on its density can be derived through observations of very-high energy (VHE; E>100 GeV) gamma-rays from distant sources: the VHE photons are attenuated via pair-production with the low energy photons from the EBL, leaving a distinct imprint in the VHE spectra measured on earth. Discoveries made with current generation VHE observatories like H.E.S.S. and MAGIC enabled strong constraints on the density of the EBL especially in the near-infrared. In this article the prospect of future VHE observatories to derive new constraints on the EBL density are discussed. To this end, results from current generation instruments will be extrapolated to the future experiments sensitivity and investigated for their power to enable new methods and improved constraints on the EBL density.
Gamma-ray Bursts (GRB) were discovered by satellite-based detectors as powerful sources of transient $gamma$-ray emission. The Fermi satellite detected an increasing number of these events with its dedicated Gamma-ray Burst Monitor (GBM), some of whi ch were associated with high energy photons $(E > 10, mathrm{GeV})$, by the Large Area Telescope (LAT). More recently, follow-up observations by Cherenkov telescopes detected very high energy emission $(E > 100, mathrm{GeV})$ from GRBs, opening up a new observational window with implications on the interpretation of their central engines and on the propagation of very energetic photons across the Universe. Here, we use the data published in the 2nd Fermi-LAT Gamma Ray Burst Catalogue to characterise the duration, luminosity, redshift and light curve of the high energy GRB emission. We extrapolate these properties to the very high energy domain, comparing the results with available observations and with the potential of future instruments. We use observed and simulated GRB populations to estimate the chances of detection with wide-field ground-based $gamma$-ray instruments. Our analysis aims to evaluate the opportunities of the Southern Wide-field-of-view Gamma-ray Observatory (SWGO), to be installed in the Southern Hemisphere, to complement CTA. We show that a low-energy observing threshold $(E_{low} < 200, mathrm{GeV})$, with good point source sensitivity $(F_{lim} approx 10^{-11}, mathrm{erg, cm^{-2}, s^{-1}}$ in $1, mathrm{yr})$, are optimal requirements to work as a GRB trigger facility and to probe the burst spectral properties down to time scales as short as $10, mathrm{s}$, accessing a time domain that will not be available to IACT instruments.
136 - P. Abreu , A. Albert , R. Alfaro 2019
We describe plans for the development of the Southern Wide-field Gamma-ray Observatory (SWGO), a next-generation instrument with sensitivity to the very-high-energy (VHE) band to be constructed in the Southern Hemisphere. SWGO will provide wide-field coverage of a large portion of the southern sky, effectively complementing current and future instruments in the global multi-messenger effort to understand extreme astrophysical phenomena throughout the universe. A detailed description of science topics addressed by SWGO is available in the science case white paper [1]. The development of SWGO will draw on extensive experience within the community in designing, constructing, and successfully operating wide-field instruments using observations of extensive air showers. The detector will consist of a compact inner array of particle detection units surrounded by a sparser outer array. A key advantage of the design of SWGO is that it can be constructed using current, already proven technology. We estimate a construction cost of 54M USD and a cost of 7.5M USD for 5 years of operation, with an anticipated US contribution of 20M USD ensuring that the US will be a driving force for the SWGO effort. The recently formed SWGO collaboration will conduct site selection and detector optimization studies prior to construction, with full operations foreseen to begin in 2026. Throughout this document, references to science white papers submitted to the Astro2020 Decadal Survey with particular relevance to the key science goals of SWGO, which include unveiling Galactic particle accelerators [2-10], exploring the dynamic universe [11-21], and probing physics beyond the Standard Model [22-25], are highlighted in red boldface.
This article is the write-up of a rapporteur talk given at the 34th ICRC in The Hague, Netherlands. It attempts to review the results and developments presented at the conference and associated to the vibrant field of ground-based gamma-ray astronomy . In total, it aims to give an overview of the 19 gamma-ray sessions, 84 talks and 176 posters presented at the 34th ICRC on this topic. New technical advances and projects will be described with an emphasis given on the cosmic-ray related studies of the Universe.
Very high energy (VHE, E >100 GeV) gamma-rays are absorbed via interaction with low-energy photons from the extragalactic background light (EBL) if the involved photon energies are above the threshold for electron-positron pair creation. The VHE gamm a-ray absorption, which is energy dependent and increases strongly with redshift, distorts the VHE spectra observed from distant objects. The observed energy spectra of the AGNs carry, therefore, an imprint of the EBL. The detection of VHE gamma-ray spectra of distant sources (z = 0.11 - 0.54) by current generation Imaging Atmospheric Cherenkov Telescopes (IACTs) enabled to set strong upper limits on the EBL density, using certain basic assumptions about blazar physics. In this paper it is studied how the improved sensitivity of the Cherenkov Telescope Array (CTA) and its enlarged energy coverage will enlarge our knowledge about the EBL and its sources. CTA will deliver a large sample of AGN at different redshifts with detailed measured spectra. In addition, it will provide the exciting opportunity to use gamma ray bursts (GRBs) as probes for the EBL density at high redshifts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا