ترغب بنشر مسار تعليمي؟ اضغط هنا

The relative abundance of compact and normal massive early-type galaxies and its evolution from redshift z~2 to the present

103   0   0.0 ( 0 )
 نشر من قبل Paolo Cassata
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Cassata




اسأل ChatGPT حول البحث

We report on the evolution of the number density and size of early-type galaxies from z~2 to z~0. We select a sample of 563 massive (M>10^{10} Msun), passively evolving (SSFR<10^{-2} Gyr^{-1}) and morphologically spheroidal galaxies at 0<z<2.5, using the panchromatic photometry and spectroscopic redshifts available in the GOODS fields. We combine ACS and WFC3 HST images to study the morphology of our galaxies in their optical rest-frame in the whole 0<z<2.5 range. We find that throughout the explored redshift range the passive galaxies selected with our criteria have weak morphological K-correction, with size being slightly smaller in the optical than in the UV rest-frame (by ~20 and ~10 at z>1.2 and z<1.2, respectively). We measure a significant evolution of the mass-size relation of early-type galaxies, with the fractional increment that is almost independent on the stellar mass. Early-type galaxies (ETGs) formed at z>1 appear to be preferentially small, and the evolution of the mass-size relation at z<1 is driven by both the continuous size growth of the compact galaxies and the appearance of new ETGs with large sizes. We also find that the number density of all passive early-type galaxies increases rapidly, by a factor of 5, from z~2 to z~1, and then more mildly by another factor of 1.5 from z~1 to z~0. We interpret these results as the evidence that the bulk of the ETGs are formed at 1<z<3 through a mechanism that leaves very compact remnants. At z<1 the compact ETGs grow gradually in size, becoming normal size galaxies, and at the same time new ETGs with normal-large sizes are formed.



قيم البحث

اقرأ أيضاً

We study the evolution of the number density, as a function of the size, of passive early-type galaxies with a wide range of stellar masses 10^10<M*/Msun<10^11.5) from z~3 to z~1, exploiting the unique dataset available in the GOODS-South field, incl uding the recently obtained WFC3 images as a part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). In particular, we select a sample of 107 massive (M*>10^10 M_sun), passive (SSFR<10^-2 Gyr^-1) and morphologically spheroidal galaxies at 1.2<z<3, taking advantage of the panchromatic dataset available for GOODS, including VLT, CFHT, Spitzer, Chandra and HST ACS+WFC3 data. We find that at 1<z<3 the passively evolving early-type galaxies are the reddest and most massive objects in the Universe, and we prove that a correlation between mass, morphology, color and star-formation activity is already in place at that epoch. We measure a significant evolution in the mass-size relation of passive early-type galaxies (ETGs) from z~3 to z~1, with galaxies growing on average by a factor of 2 in size in a 3 Gyr timescale only. We witness also an increase in the number density of passive ETGs of 50 times over the same time interval. We find that the first ETGs to form at z>2 are all compact or ultra-compact, while normal sized ETGs (meaning ETGs with sizes comparable to those of local counterparts of the same mass) are the most common ETGs only at z<1. The increase of the average size of ETGs at 0<z<1 is primarily driven by the appearance of new large ETGs rather than by the size increase of individual galaxies.
149 - P. Saracco 2010
[Abridged]We present a study based on a sample of 62 early-type galaxies (ETGs) at 0.9<z_spec<2 aimed at constraining their past star formation and mass assembly histories. The sample is composed of normal ETGs having effective radii comparable to th e mean radius of local ones and of compact ETGs having effective radii from two to six times smaller. We do not find evidence of a dependence of the compactness of ETGs on their stellar mass. We find that the stellar mass of normal ETGs formed at z_form<3 while the stellar content of compact ETGs formed at 2<z_form<10 with a large fraction of them characterized by z_form>5. Earlier stars formed at z_form>5 are assembled in compact and more massive (M_*>10^11 M_sun) ETGs while stars later formed (z_form<3) or resulting from subsequent episodes of star formation are assembled both in compact and normal ETGs. Thus, the older the stellar population the higher the mass of the hosting galaxy but not vice versa. This suggests that the epoch of formation may play a role in the formation of massive ETGs rather than the mass itself. The possible general scheme in which normal <z>~1.5 ETGs are descendants of high-z compact spheroids enlarged through subsequent dry mergers is not compatible with the current models which predict a number of dry mergers two orders of magnitude lower than the one needed. Moreover, we do not find evidence supporting a dependence of the compactness of galaxies on their redshift of assembly. Finally, we propose a simple scheme of formation and assembly of the stellar mass of ETGs based on dissipative gas-rich merger which can qualitatively account for the co-existence of normal and compact ETGs observed at <z>~1.5 in spite of the same stellar mass, the lack of normal ETGs with high z_form and the absence of correlation between compactness, stellar mass and formation redshift.
147 - Tomonori Totani 2009
The dramatic size evolution of early-type galaxies from z ~ 2 to 0 poses a new challenge in the theory of galaxy formation, which may not be explained by the standard picture. It is shown here that the size evolution can be explained if the non-baryo nic cold dark matter is composed of compact objects having a mass scale of ~10^5 M_sun. This form of dark matter is consistent with or only weakly constrained by the currently available observations. The kinetic energy of the dark compact objects is transferred to stars by dynamical friction, and stars around the effective radius are pushed out to larger radii, resulting in a pure size evolution. This scenario has several good properties to explain the observations, including the ubiquitous nature of size evolution and faster disappearance of higher density galaxies.
123 - Alan Stockton , Hsin-Yi Shih , 2009
From a search of a portion of the sky covered by the SDSS and UKIDSS databases, we have located 2 galaxies at z~0.5 that have properties similar to those of the luminous passive compact galaxies found at z~2.5. From Keck moderate-resolution spectrosc opy and laser-guided adaptive-optics imaging of these galaxies, we can begin to put together a more detailed picture of what their high-redshift counterparts might be like. Spectral-synthesis models that fit the u to K photometry also seem to give good fits to the spectral features. From these models, we estimate masses in the range of 3-4 10^11 M_sun for both galaxies. Under the assumption that these are spheroidal galaxies, our velocity dispersions give estimated masses about a factor of 3 smaller. However, our high-resolution imaging data indicate that these galaxies are not normal spheroids, and the interpretation of the kinematic data depends critically on the actual morphologies and the nature of the stellar orbits. While recent suggestions that the population of high-redshift compact galaxies is present locally as the inner regions of local massive elliptical galaxies are quite plausible, the peak mass surface densities of the two galaxies we discuss here appear to be up to a factor of 10 higher than those of the highest density local ellipticals, assuming that our photometric masses are roughly correct. It thus seems possible that some dynamical puffing-up of the high-redshift galaxies might still be required in this scenario.
We present Gran-Telescopio-Canarias/OSIRIS optical spectra of 4 of the most compact and massive early-type galaxies in the Groth Strip Survey at redshift z~1, with effective radii Reff=0.5-2.4 kpc and photometric stellar masses Mstar=1.2-4x10^11 Msun . We find these galaxies have velocity dispersions sigma=156-236 km/s. The spectra are well fitted by single stellar population models with approximately 1 Gyr of age and solar metallicity. We find that: i) the dynamical masses of these galaxies are systematically smaller by a factor of ~6 than the published stellar masses using BRIJK photometry; ii) when estimating stellar masses as 0.7xMdyn, a combination of passive luminosity fading with mass/size growth due to minor mergers can plausibly evolve our objects to match the properties of the local population of early-type galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا