ترغب بنشر مسار تعليمي؟ اضغط هنا

A low optical depth region in the inner disk of the HerbigAe star HR5999

82   0   0.0 ( 0 )
 نشر من قبل Myriam Benisty
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Circumstellar disks surrounding young stars are known to be the birthplaces of planets, and the innermost astronomical unit is of particular interest. We present new long-baseline spectro-interferometric observations of the HerbigAe star, HR5999, obtained in the H and K bands with the AMBER instrument at the VLTI, and aim to produce near-infrared images at the sub-AU spatial scale. We spatially resolve the circumstellar material and reconstruct images using the MiRA algorithm. In addition, we interpret the interferometric observations using models that assume that the near-infrared excess is dominated by the emission of a circumstellar disk. We compare the images reconstructed from the VLTI measurements to images obtained using simulated model data. The K-band image reveals three main elements: a ring-like feature located at ~0.65 AU, a low surface brightness region inside, and a central spot. At the maximum angular resolution of our observations (1.3 mas), the ring is resolved while the central spot is only marginally resolved, preventing us from revealing the exact morphology of the circumstellar environment. We suggest that the ring traces silicate condensation, i.e., an opacity change, in a circumstellar disk around HR 5999. We build a model that includes a ring at the silicate sublimation radius and an inner disk of low surface brightness responsible for a large amount of the near-infrared continuum emission. The model successfully fits the SED, visibilities, and closure phases, and provides evidence of a low surface brightness region inside the silicate sublimation radius. This study provides additional evidence that in HerbigAe stars, there is material in a low surface brightness region, probably a low optical depth region, located inside the silicate sublimation radius and of unknown nature.


قيم البحث

اقرأ أيضاً

238 - G. Aresu , I. Kamp , R. Meijerink 2014
The structure of protoplanetary disks is thought to be linked to the temperature and chemistry of their dust and gas. Whether the disk is flat or flaring depends on the amount of radiation that it absorbs at a given radius, and on the efficiency with which this is converted into thermal energy. The understanding of these heating and cooling processes is crucial to provide a reliable disk structure for the interpretation of dust continuum emission and gas line fluxes. Especially in the upper layers of the disk, where gas and dust are thermally decoupled, the infrared line emission is strictly related to the gas heating/cooling processes. We aim to study the thermal properties of the disk in the oxygen line emission region, and to investigate the relative importance of X-ray (1-120 Angstrom) and far-UV radiation (FUV, 912-2070 Angstrom) for the heating balance there. We use [OI] 63 micron line fluxes observed in a sample of protoplanetary disks of the Taurus/Auriga star forming region and compare it to the model predictions presented in our previous work. The data were obtained with the PACS instrument on board the Herschel Space Observatory as part of the Herschel Open Time Key Program GASPS (GAS in Protoplanetary diskS), published in Howard et al. (2013). Our theoretical grid of disk models can reproduce the [OI] absolute fluxes and predict a correlation between [OI] and the sum Lx+Lfuv. The data show no correlation between the [OI] line flux and the X-ray luminosity, the FUV luminosity or their sum. The data show that the FUV or X-ray radiation has no notable impact on the region where the [OI] line is formed. This is in contrast with what is predicted from our models. Possible explanations are that the disks in Taurus are less flaring than the hydrostatic models predict, and/or that other disk structure aspects that were left unchanged in our models are important. ..abridged..
We report FUV, optical, and NIR observations of three T Tauri stars in the Orion OB1b subassociation with H$alpha$ equivalent widths consistent with low or absent accretion and various degrees of excess flux in the mid-infrared. We aim to search for evidence of gas in the inner disk in HST ACS/SBC spectra, and to probe the accretion flows onto the star using H$alpha$ and He I $lambda$10830 in spectra obtained at the Magellan and SOAR telescopes. At the critical age of 5 Myr, the targets are at different stages of disk evolution. One of our targets is clearly accreting, as shown by redshifted absorption at free-fall velocities in the He I line and wide wings in H$alpha$; however, a marginal detection of FUV H$_2$ suggests that little gas is present in the inner disk, although the spectral energy distribution indicates that small dust still remains close to the star. Another target is surrounded by a transitional disk, with an inner cavity in which little sub-micron dust remains. Still, the inner disk shows substantial amounts of gas, accreting onto the star at a probably low, but uncertain rate. The third target lacks both a He I line or FUV emission, consistent with no accretion or inner gas disk; its very weak IR excess is consistent with a debris disk. Different processes occurring in targets with ages close to the disk dispersal time suggest that the end of accretion phase is reached in diverse ways.
Context. The inner few au region of planet-forming disks is a complex environment. High angular resolution observations have a key role in understanding the disk structure and the dynamical processes at work. Aims. In this study we aim to characteriz e the mid-infrared brightness distribution of the inner disk of the young intermediate-mass star HD 163296, from VLTI/MATISSE observations. Methods. We use geometric models to fit the data. Our models include a smoothed ring, a flat disk with inner cavity, and a 2D Gaussian. The models can account for disk inclination and for azimuthal asymmetries as well. We also perform numerical hydro-dynamical simulations of the inner edge of the disk. Results. Our modeling reveals a significant brightness asymmetry in the L-band disk emission. The brightness maximum of the asymmetry is located at the NW part of the disk image, nearly at the position angle of the semimajor axis. The surface brightness ratio in the azimuthal variation is $3.5 pm 0.2$. Comparing our result on the location of the asymmetry with other interferometric measurements, we confirm that the morphology of the $r<0.3$ au disk region is time-variable. We propose that this asymmetric structure, located in or near the inner rim of the dusty disk, orbits the star. For the physical origin of the asymmetry, we tested a hypothesis where a vortex is created by Rossby wave instability, and we find that a unique large scale vortex may be compatible with our data. The half-light radius of the L-band emitting region is $0.33pm 0.01$ au, the inclination is ${52^circ}^{+5^circ}_{-7^circ}$, and the position angle is $143^circ pm 3^circ$. Our models predict that a non-negligible fraction of the L-band disk emission originates inside the dust sublimation radius for $mu$m-sized grains. Refractory grains or large ($gtrsim 10 mu$m-sized) grains could be the origin for this emission.
70 - L. Chen , A. Kospal , P. Abraham 2017
An essential step to understanding protoplanetary evolution is the study of disks that contain gaps or inner holes. The pretransitional disk around the Herbig star HD 169142 exhibits multi-gap disk structure, differentiated gas and dust distribution, planet candidates, and near-infrared fading in the past decades, which make it a valuable target for a case study of disk evolution. Using near-infrared interferometric observations with VLTI/PIONIER, we aim to study the dust properties in the inner sub-au region of the disk in the years 2011-2013, when the object is already in its near-infrared faint state. We first performed simple geometric modeling to characterize the size and shape of the NIR-emitting region. We then performed Monte-Carlo radiative transfer simulations on grids of models and compared the model predictions with the interferometric and photometric observations. We find that the observations are consistent with optically thin gray dust lying at Rin ~ 0.07 au, passively heated to T ~ 1500 K. Models with sub-micron optically thin dust are excluded because such dust will be heated to much higher temperatures at similar distance. The observations can also be reproduced with a model consisting of optically thick dust at Rin ~ 0.06 au, but this model is plausible only if refractory dust species enduring ~2400 K exist in the inner disk.
We present a detailed analysis of new ALMA observations of the disk around the T-Tauri star HD 143006, which at 46 mas (7.6 au) resolution reveal new substructures in the 1.25 mm continuum emission. The disk resolves into a series of concentric rings and gaps together with a bright arc exterior to the rings that resembles hydrodynamics simulations of a vortex, and a bridge-like feature connecting the two innermost rings. Although our $^{12}$CO observations at similar spatial resolution do not show obvious substructure, they reveal an inner disk depleted of CO emission. From the continuum emission and the CO velocity field we find that the innermost ring has a higher inclination than the outermost rings and the arc. This is evidence for either a small ($sim8^{circ}$) or moderate ($sim41^{circ}$) misalignment between the inner and outer disk, depending on the specific orientation of the near/far sides of the inner/outer disk. We compare the observed substructures in the ALMA observations with recent scattered light data from VLT/SPHERE of this object. In particular, the location of narrow shadow lanes in the SPHERE image combined with pressure scale height estimates, favor a large misalignment of about $41^{circ}$. We discuss our findings in the context of a dust-trapping vortex, planet-carved gaps, and a misaligned inner disk due to the presence of an inclined companion to HD 143006.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا