ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-reproductive and reproductive solutions of some matrix equations

80   0   0.0 ( 0 )
 نشر من قبل Branko Malesevic
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we analyzed solutions of some complex matrix equations related to pseudoinverses using the concept of reproductivity. Especially for matrix equation AXB=C it is shown that Penroses general solution is actually the case of the reproductive solution.



قيم البحث

اقرأ أيضاً

All genes interact with other genes, and their additive effects and epistatic interactions affect an organisms phenotype and fitness. Recent theoretical and empirical work has advanced our understanding of the role of multi-locus interactions in spec iation. However, relating different models to one another and to empirical observations is challenging. This review focuses on multi-locus interactions that lead to reproductive isolation (RI) through reduced hybrid fitness. We first review theoretical approaches and show how recent work incorporating a mechanistic understanding of multi-locus interactions recapitulates earlier models, but also makes novel predictions concerning the build-up of RI. These include high variance in the build-up rate of RI among taxa, the emergence of strong incompatibilities producing localised barriers to introgression, and an effect of population size on the build-up of RI. We then review recent experimental approaches to detect multi-locus interactions underlying RI using genomic data. We argue that future studies would benefit from overlapping methods like Ancestry Disequilibrium scans, genome scans of differentiation and analyses of hybrid gene expression. Finally, we highlight a need for further overlap between theoretical and empirical work, and approaches that predict what kind of patterns multi-locus interactions resulting in incompatibilities will leave in genome-wide polymorphism data.
We consider a single outbreak susceptible-infected-recovered (SIR) model and corresponding estimation procedures for the effective reproductive number $mathcal{R}(t)$. We discuss the estimation of the underlying SIR parameters with a generalized leas t squares (GLS) estimation technique. We do this in the context of appropriate statistical models for the measurement process. We use asymptotic statistical theories to derive the mean and variance of the limiting (Gaussian) sampling distribution and to perform post statistical analysis of the inverse problems. We illustrate the ideas and pitfalls (e.g., large condition numbers on the corresponding Fisher information matrix) with both synthetic and influenza incidence data sets.
We present an end-to-end statistical framework for personalized, accurate, and minimally invasive modeling of female reproductive hormonal patterns. Reconstructing and forecasting the evolution of hormonal dynamics is a challenging task, but a critic al one to improve general understanding of the menstrual cycle and personalized detection of potential health issues. Our goal is to infer and forecast individual hormone daily levels over time, while accommodating pragmatic and minimally invasive measurement settings. To that end, our approach combines the power of probabilistic generative models (i.e., multi-task Gaussian processes) with the flexibility of neural networks (i.e., a dilated convolutional architecture) to learn complex temporal mappings. To attain accurate hormone level reconstruction with as little data as possible, we propose a sampling mechanism for optimal reconstruction accuracy with limited sampling budget. Our results show the validity of our proposed hormonal dynamic modeling framework, as it provides accurate predictive performance across different realistic sampling budgets and outperforms baselines methods.
The correct evaluation of the reproductive number $R$ for COVID-19 -- which characterizes the average number of secondary cases generated by each typical primary case -- is central in the quantification of the potential scope of the pandemic and the selection of an appropriate course of action. In most models, $R$ is modeled as a universal constant for the virus across outbreak clusters and individuals -- effectively averaging out the inherent variability of the transmission process due to varying individual contact rates, population densities, demographics, or temporal factors amongst many. Yet, due to the exponential nature of epidemic growth, the error due to this simplification can be rapidly amplified and lead to inaccurate predictions and/or risk evaluation. From the statistical modeling perspective, the magnitude of the impact of this averaging remains an open question: how can this intrinsic variability be percolated into epidemic models, and how can its impact on uncertainty quantification and predictive scenarios be better quantified? In this paper, we propose to study this question through a Bayesian perspective, creating a bridge between the agent-based and compartmental approaches commonly used in the literature. After deriving a Bayesian model that captures at scale the heterogeneity of a population and environmental conditions, we simulate the spread of the epidemic as well as the impact of different social distancing strategies, and highlight the strong impact of this added variability on the reported results. We base our discussion on both synthetic experiments -- thereby quantifying of the reliability and the magnitude of the effects -- and real COVID-19 data.
The reproductive number R_0 (and its value after initial disease emergence R) has long been used to predict the likelihood of pathogen invasion, to gauge the potential severity of an epidemic, and to set policy around interventions. However, often ig nored complexities have generated confusion around use of the metric. This is particularly apparent with the emergent pandemic virus SARS-CoV-2, the causative agent of COVID-19. We address some of these misconceptions, namely, how R changes over time, varies over space, and relates to epidemic size by referencing the mathematical definition of R and examples from the current pandemic. We hope that a better appreciation of the uses, nuances, and limitations of R facilitates a better understanding of epidemic spread, epidemic severity, and the effects of interventions in the context of SARS-CoV-2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا