ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic and transport properties of rare-earth-based half-Heusler phases RPdBi: prospective systems for topological quantum phenomena

48   0   0.0 ( 0 )
 نشر من قبل Krzysztof Gofryk
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

RPdBi (R = Er, Ho, Gd, Dy, Y, Nd) compounds were studied by means of x-ray diffraction, magnetic susceptibility, electrical resistivity, magnetoresistivity, thermoelectric power and Hall effect measurements, performed in the temperature range 1.5-300 K and in magnetic fields up to 12 T. These ternaries, except diamagnetic YPdBi, exhibit localized magnetism of $R^{3+}$ ions, and order antiferromagnetically at low temperatures ($T_{N}$ = 2-13 K). The transport measurements revealed behavior characteristic of semimetals or narrow-band semiconductors. Both, electrons and holes contribute to the conductivity with dominant role of p-type carriers. The Hall effect of ErPdBi is strongly temperature and magnetic field dependent, reflecting complex character of the underlying electronic structures with multiple electron and hole bands. RPdBi, and especially DyPdBi, exhibit very good thermoelectric properties with a power factor coefficient $PF$ ranging from 6 to 20 $mu$Wcm$^{-1}$K$^{-2}$.

قيم البحث

اقرأ أيضاً

110 - Jiabin Yu , Binghai Yan , 2017
In this work, we construct a generalized Kane model with a new coupling term between itinerant electron spins and local magnetic moments of anti-ferromagnetic ordering in order to describe the low energy effective physics in a large family of anti-fe rromagnetic half-Heusler materials. Topological properties of this generalized Kane model is studied and a large variety of topological phases, including Dirac semimetal phase, Weyl semimetal phase, nodal line semimetal phase, type-B triple point semimetal phase, topological mirror (or glide) insulating phase and anti-ferromagnetic topological insulating phase, are identified in different parameter regions of our effective models. In particular, we find that the system is always driven into the anti-ferromagnetic topological insulator phase once a bulk band gap is open, irrespective of the magnetic moment direction, thus providing a robust realization of anti-ferromagentic topological insulators. Furthermore, we discuss the possible realization of these topological phases in realistic anti-ferromagnetic half-Heusler materials. Our effective model provides a basis for the future study of physical phenomena in this class of materials.
We report the deposition of thin Co$_2$FeSi films by RF magnetron sputtering. Epitaxial (100)-oriented and L2$_1$ ordered growth is observed for films grown on MgO(100) substrates. (110)-oriented films on Al$_2$O$_3$(110) show several epitaxial domai ns in the film plane. Investigation of the magnetic properties reveals a saturation magnetization of 5.0 $mu_B/f.u.$ at low temperatures. The temperature dependence of the resistivity $rho_{xx}(T)$ exhibits a crossover from a T^3.5 law at T<50K to a T^1.65 behaviour at elevated temperatures. $rho_{xx}(H)$ shows a small anisotropic magnetoresistive effect. A weak dependence of the normal Hall effect on the external magnetic field indicates the compensation of electron and hole like contributions at the Fermi surface.
We have investigated the electronic and thermoelectric properties of half-Heusler alloys NiTZ (T = Sc, and Ti; Z = P, As, Sn, and Sb) having 18 valence electron. Calculations are performed by means of density functional theory and Boltzmann transport equation with constant relaxation time approximation, validated by NiTiSn. The chosen half-Heuslers are found to be an indirect band gap semiconductor, and the lattice thermal conductivity is comparable with the state-of-the-art thermoelectric materials. The estimated power factor for NiScP, NiScAs, and NiScSb reveals that their thermoelectric performance can be enhanced by appropriate doping rate. The value of ZT found for NiScP, NiScAs, and NiScSb are 0.46, 0.35, and 0.29, respectively at 1200 K.
We have performed magnetic susceptibility and neutron scattering measurements on polycrystalline Ag-In-RE (RE: rare-earth) 1/1 approximants. In the magnetic susceptibility measurements, for most of the RE elements, inverse susceptibility shows linear behaviour in a wide temperature range, confirming well localized isotropic moments for the RE$^{3+}$ ions. Exceptionally for the light RE elements, such as Ce and Pr, non-linear behaviour was observed, possibly due to significant crystalline field splitting or valence fluctuation. For RE = Tb, the susceptibility measurement clearly shows a bifurcation of the field-cooled and zero-field-cooled susceptibility at $T_{rm f} = 3.7$~K, suggesting a spin-glass-like freezing. On the other hand, neutron scattering measurements detect significant development of short-range antiferromagnetic spin correlations in elastic channel, which accompanied by a broad peak at $hbaromega = 4$~meV in inelastic scattering spectrum. These features have striking similarity to those in the Zn-Mg-Tb quasicrystals, suggesting that the short-range spin freezing behaviour is due to local high symmetry clusters commonly seen in both the systems.
Epitaxial thin films of the substitutionally alloyed half-Heusler series CoTi$_{1-x}$Fe$_x$Sb were grown by molecular beam epitaxy on InAlAs/InP(001) substrates for concentrations 0.0$leq$x$leq$1.0. The influence of Fe on the structural, electronic, and magnetic properties was studied and compared to that expected from density functional theory. The films are epitaxial and single crystalline, as measured by reflection high-energy electron diffraction and X-ray diffraction. Using in-situ X-ray photoelectron spectroscopy, only small changes in the valence band are detected for x$leq$0.5. For films with x$geq$0.05, ferromagnetism is observed in SQUID magnetometry with a saturation magnetization that scales linearly with Fe content. A dramatic decrease in the magnetic moment per formula unit occurs when the Fe is substitutionally alloyed on the Co site indicating a strong dependence on the magnetic moment with site occupancy. A crossover from both in-plane and out-of-plane magnetic moments to only in-plane moment occurs for higher concentrations of Fe. Ferromagnetic resonance indicates a transition from weak to strong interaction with a reduction in inhomogeneous broadening as Fe content is increased. Temperature-dependent transport reveals a semiconductor to metal transition with thermally activated behavior for x$leq$0.5. Anomalous Hall effect and large negative magnetoresistance (up to -18.5% at 100 kOe for x=0.3) are observed for higher Fe content films. Evidence of superparamagnetism for x=0.3 and x=0.2 suggests for moderate levels of Fe, demixing of the CoTi$_{1-x}$Fe$_x$Sb films into Fe rich and Fe deficient regions may be present. Atom probe tomography is used to examine the Fe distribution in a x=0.3 film. Statistical analysis reveals a nonhomogeneous distribution of Fe atoms throughout the film, which is used to explain the observed magnetic and electrical behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا