ﻻ يوجد ملخص باللغة العربية
We theoretically study the carrier-envelope phase dependent inversion generated in a two-level system by excitation with a few-cycle pulse. Based on the invariance of the inversion under time reversal of the exciting field, parameters are introduced to characterize the phase sensitivity of the induced inversion. Linear and nonlinear phase effects are numerically studied for rectangular and sinc-shaped pulses. Furthermore, analytical results are obtained in the limits of weak fields as well as strong dephasing, and by nearly degenerate perturbation theory for sinusoidal excitation. The results show that the phase sensitive inversion in the ideal two-level system is a promising route for constructing carrier-envelope phase detectors.
We present a joint experimental-theoretical study on the effect of the carrier-envelope phase (CEP) of a few-cycle pulse on the atomic excitation process. We focus on the excitation rates of argon as a function of CEP in the intensity range from 50-3
We report on tunnel ionization of Xe by 2-cycle, intense, infrared laser pulses and its dependence on carrier-envelope-phase (CEP). At low values of optical field ($E$), the ionization yield is maximum for cos-like pulses with the dependence becoming
Carrier envelope phase (CEP) stabilized pulses of intense 800 nm light of 5 fs duration are used to probe the dissociation dynamics of dications of isotopically-substituted water, HOD. HOD$^{2+}$ dissociates into either H$^+$ + OD$^+$ or D$^+$ + OH$^
We demonstrate theoretically the parametric oscillator behavior of a two-level quantum system with broken inversion symmetry exposed to a strong electromagnetic field. A multitude of resonance frequencies and additional harmonics in the scattered lig
We present a method to distinguish the high harmonics generated in individual half-cycle of the driving laser pulse by mixing a weak ultraviolet pulse, enabling one to observe the cutoff of each half-cycle harmonic. We show that the detail informatio