ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutrino Signatures on the High Transmission Regions of the Lyman-alpha Forest

45   0   0.0 ( 0 )
 نشر من قبل Francisco Villaescusa-Navarro
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We quantify the impact of massive neutrinos on the statistics of low density regions in the intergalactic medium (IGM) as probed by the Lyman-alpha forest at redshifts z=2.2--4. Based on mock but realistic quasar (QSO) spectra extracted from hydrodynamic simulations with cold dark matter, baryons and neutrinos, we find that the probability distribution of weak Lyman-alpha absorption features, as sampled by Lyman-alpha flux regions at high transmissivity, is strongly affected by the presence of massive neutrinos. We show that systematic errors affecting the Lyman-alpha forest reduce but do not erase the neutrino signal. Using the Fisher matrix formalism, we conclude that the sum of the neutrino masses can be measured, using the method proposed in this paper, with a precision smaller than 0.4 eV using a catalog of 200 high resolution (S/N~100) QSO spectra. This number reduces to 0.27 eV by making use of reasonable priors in the other parameters that also affect the statistics of the high transitivity regions of the Lyman-alpha forest. The constraints obtained with this method can be combined with independent bounds from the CMB, large scale structures and measurements of the matter power spectrum from the Lyman-alpha forest to produce tighter upper limits on the sum of the masses of the neutrinos.

قيم البحث

اقرأ أيضاً

The lya forest at high redshifts is a powerful probe of reionization. Modeling and observing this imprint comes with significant technical challenges: inhomogeneous reionization must be taken into account while simultaneously being able to resolve th e web-like small-scale structure prior to reionization. In this work we quantify the impact of inhomogeneous reionization on the lya forest at lower redshifts ($2 < z < 4$), where upcoming surveys such as DESI will enable precision measurements of the flux power spectrum. We use both small box simulations capable of handling the small-scale structure of the lya forest and semi-numerical large box simulations capable of representing the effects of inhomogeneous reionization. We find that inhomogeneous reionization could produce a measurable effect on the lya forest power spectrum. The deviation in the 3D power spectrum at $z_{rm obs} = 4$ and $k = 0.14 rm{Mpc}^{-1}$ ranges from $19 - 36%$, with a larger effect for later reionization. The corrections decrease to $2.0 - 4.1%$ by $z_{rm obs} = 2$. The impact on the 1D power spectrum is smaller, and ranges from $3.3 - 6.5%$ at $z_{rm obs}=4$ to $0.35 - 0.75%$ at $z_{rm obs}=2$, values which are comparable to the statistical uncertainties in current and upcoming surveys. Furthermore, we study how can this systematic be constrained with the help of the quadrupole of the 21 cm power spectrum.
355 - Rupert A.C. Croft 2017
The angular positions of quasars are deflected by the gravitational lensing effect of foreground matter. The Lyman-alpha forest seen in the spectra of these quasars is therefore also lensed. We propose that the signature of weak gravitational lensing of the forest could be measured using similar techniques that have been applied to the lensed Cosmic Microwave Background, and which have also been proposed for application to spectral data from 21cm radio telescopes. As with 21cm data, the forest has the advantage of spectral information, potentially yielding many lensed slices at different redshifts. We perform an illustrative idealized test, generating a high resolution angular grid of quasars (of order arcminute separation), and lensing the Lyman-alphaforest spectra at redshifts z=2-3 using a foreground density field. We find that standard quadratic estimators can be used to reconstruct images of the foreground mass distribution at z~1. There currently exists a wealth of Lya forest data from quasar and galaxy spectral surveys, with smaller sightline separations expected in the future. Lyman-alpha forest lensing is sensitive to the foreground mass distribution at redshifts intermediate between CMB lensing and galaxy shear, and avoids the difficulties of shape measurement associated with the latter. With further refinement and application of mass reconstruction techniques, weak gravitational lensing of the high redshift Lya forest may become a useful new cosmological probe.
425 - Lawrence Huang 2020
We explore the use of Deep Learning to infer physical quantities from the observable transmitted flux in the Lyman-alpha forest. We train a Neural Network using redshift z=3 outputs from cosmological hydrodynamic simulations and mock datasets constru cted from them. We evaluate how well the trained network is able to reconstruct the optical depth for Lyman-alpha forest absorption from noisy and often saturated transmitted flux data. The Neural Network outperforms an alternative reconstruction method involving log inversion and spline interpolation by approximately a factor of 2 in the optical depth root mean square error. We find no significant dependence in the improvement on input data signal to noise, although the gain is greatest in high optical depth regions. The Lyman-alpha forest optical depth studied here serves as a simple, one dimensional, example but the use of Deep Learning and simulations to approach the inverse problem in cosmology could be extended to other physical quantities and higher dimensional data.
We present constraints on neutrino masses, the primordial fluctuation spectrum from inflation, and other parameters of the $Lambda$CDM model, using the one-dimensional Ly$alpha$-forest power spectrum measured by Palanque-Delabrouille et al. (2013) fr om SDSS-III/BOSS, complemented by Planck 2015 cosmic microwave background (CMB) data and other cosmological probes. This paper improves on the previous analysis by Palanque-Delabrouille et al. (2015) by using a more powerful set of calibrating hydrodynamical simulations that reduces uncertainties associated with resolution and box size, by adopting a more flexible set of nuisance parameters for describing the evolution of the intergalactic medium, by including additional freedom to account for systematic uncertainties, and by using Planck 2015 constraints in place of Planck 2013. Fitting Ly$alpha$ data alone leads to cosmological parameters in excellent agreement with the values derived independently from CMB data, except for a weak tension on the scalar index $n_s$. Combining BOSS Ly$alpha$ with Planck CMB constrains the sum of neutrino masses to $sum m_ u < 0.12$ eV (95% C.L.) including all identified systematic uncertainties, tighter than our previous limit (0.15 eV) and more robust. Adding Ly$alpha$ data to CMB data reduces the uncertainties on the optical depth to reionization $tau$, through the correlation of $tau$ with $sigma_8$. Similarly, correlations between cosmological parameters help in constraining the tensor-to-scalar ratio of primordial fluctuations $r$. The tension on $n_s$ can be accommodated by allowing for a running ${mathrm d}n_s/{mathrm d}ln k$. Allowing running as a free parameter in the fits does not change the limit on $sum m_ u$. We discuss possible interpretations of these results in the context of slow-roll inflation.
We provide an analytical description of the line broadening of HI absorbers in the Lyman-alpha forest resulting from Doppler broadening and Jeans smoothing. We demonstrate that our relation captures the dependence of the line-width on column density for narrow lines in z~3 mock spectra remarkably well. Broad lines at a given column density arise when the underlying density structure is more complex, and such clustering is not captured by our model. Our understanding of the line broadening opens the way to a new method to characterise the thermal state of the intergalactic medium and to determine the sizes of the absorbing structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا