ترغب بنشر مسار تعليمي؟ اضغط هنا

Non Axi-symmetric Anisotropy of Solar Wind Turbulence

123   0   0.0 ( 0 )
 نشر من قبل Andrew Turner Mr
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A key prediction of turbulence theories is frame-invariance, and in magnetohydrodynamic (MHD) turbulence, axisymmetry of fluctuations with respect to the background magnetic field. Paradoxically the power in fluctuations in the turbulent solar wind are observed to be ordered with respect to the bulk macroscopic flow as well as the background magnetic field. Here, non- axisymmetry across the inertial and dissipation ranges is quantified using in-situ observations from Cluster. The observed inertial range non- axisymmetry is reproduced by a fly through sampling of a Direct Numerical Simulation of MHD turbulence. Furthermore, fly through sampling of a linear superposition of transverse waves with axisymmetric fluctuations generates the trend in non- axisymmetry with power spectral exponent. The observed non-axisymmetric anisotropy may thus simply arise as a sampling effect related to Taylors hypothesis and is not related to the plasma dynamics itself.



قيم البحث

اقرأ أيضاً

The CO(1-0) and (2-1) emission of the circumstellar envelope of the AGB star EP Aqr has been observed using the IRAM PdBI and the IRAM 30-m telescope. The line profiles reveal the presence of two distinct components centered on the star velocity, a b road component extending up to ~10 km/s and a narrow component indicating an expansion velocity of ~2 km/s. An early analysis of these data was performed under the assumption of isotropic winds. The present study revisits this interpretation by assuming instead a bipolar outflow nearly aligned with the line of sight. A satisfactory description of the observed flux densities is obtained with a radial expansion velocity increasing from ~2 km/s at the equator to ~10 km/s near the poles. The angular aperture of the bipolar outflow is ~45 deg with respect to the star axis, which makes an angle of ~13 deg with the line of sight. A detailed study of the CO(1-0) to CO(2-1) flux ratio reveals a significant dependence of the temperature on the star latitude, smaller and steeper at the poles than at the equator at large distances from the star. Under the hypothesis of radial expansion and of rotation invariance about the star axis, the effective density has been evaluated in space as a function of star coordinates. Evidence is found for an enhancement of the effective density in the northern hemisphere of the star at angular distances in excess of ~3 and covering the whole longitudinal range. The peak velocity of the narrow component is observed to vary slightly with position on the sky, a variation consistent with the model and understood as the effect of the inclination of the star axis with respect to the line of sight. While the phenomenological model presented here reproduces well the general features of the observations, significant differences are also revealed, which would require a better spatial resolution to be properly described.
Based on global conservation principles, magnetohydrodynamic (MHD) relaxation theory predicts the existence of several equilibria, such as the Taylor state or global dynamic alignment. These states are generally viewed as very long-time and large-sca le equilibria, which emerge only after the termination of the turbulent cascade. As suggested by hydrodynamics and by recent MHD numerical simulations, relaxation processes can occur during the turbulent cascade that will manifest themselves as local patches of equilibrium-like configurations. Using multi-spacecraft analysis techniques in conjunction with Cluster data, we compute the current density and flow vorticity and for the first time demonstrate that these localized relaxation events are observed in the solar wind. Such events have important consequences for the statistics of plasma turbulence.
The fourth orbit of Parker Solar Probe (PSP) reached heliocentric distances down to 27.9 Rs, allowing solar wind turbulence and acceleration mechanisms to be studied in situ closer to the Sun than previously possible. The turbulence properties were f ound to be significantly different in the inbound and outbound portions of PSPs fourth solar encounter, likely due to the proximity to the heliospheric current sheet (HCS) in the outbound period. Near the HCS, in the streamer belt wind, the turbulence was found to have lower amplitudes, higher magnetic compressibility, a steeper magnetic field spectrum (with spectral index close to -5/3 rather than -3/2), a lower Alfvenicity, and a 1/f break at much lower frequencies. These are also features of slow wind at 1 au, suggesting the near-Sun streamer belt wind to be the prototypical slow solar wind. The transition in properties occurs at a predicted angular distance of ~4{deg} from the HCS, suggesting ~8{deg} as the full-width of the streamer belt wind at these distances. While the majority of the Alfvenic turbulence energy fluxes measured by PSP are consistent with those required for reflection-driven turbulence models of solar wind acceleration, the fluxes in the streamer belt are significantly lower than the model predictions, suggesting that additional mechanisms are necessary to explain the acceleration of the streamer belt solar wind.
We investigate the anisotropy of Alfvenic turbulence in the inertial range of slow solar wind and in both driven and decaying reduced magnetohydrodynamic simulations. A direct comparison is made by measuring the anisotropic second-order structure fun ctions in both data sets. In the solar wind, the perpendicular spectral index of the magnetic field is close to -5/3. In the forced simulation, it is close to -5/3 for the velocity and -3/2 for the magnetic field. In the decaying simulation, it is -5/3 for both fields. The spectral index becomes steeper at small angles to the local magnetic field direction in all cases. We also show that when using the global rather than local mean field, the anisotropic scaling of the simulations cannot always be properly measured.
214 - G. G. Howes 2015
A dynamical approach, rather than the usual statistical approach, is taken to explore the physical mechanisms underlying the nonlinear transfer of energy, the damping of the turbulent fluctuations, and the development of coherent structures in kineti c plasma turbulence. It is argued that the linear and nonlinear dynamics of Alfven waves are responsible, at a very fundamental level, for some of the key qualitative features of plasma turbulence that distinguish it from hydrodynamic turbulence, including the anisotropic cascade of energy and the development of current sheets at small scales. The first dynamical model of kinetic turbulence in the weakly collisional solar wind plasma that combines self-consistently the physics of Alfven waves with the development of small-scale current sheets is presented and its physical implications are discussed. This model leads to a simplified perspective on the nature of turbulence in a weakly collisional plasma: the nonlinear interactions responsible for the turbulent cascade of energy and the formation of current sheets are essentially fluid in nature, while the collisionless damping of the turbulent fluctuations and the energy injection by kinetic instabilities are essentially kinetic in nature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا