ترغب بنشر مسار تعليمي؟ اضغط هنا

The binary Be star {delta} Sco at high spectral and spatial resolution: Disk geometry and kinematics before the 2011 periastron

121   0   0.0 ( 0 )
 نشر من قبل Meilland Anthony
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Anthony Meilland




اسأل ChatGPT حول البحث

Classical Be stars are hot non-supergiant stars surrounded by a gaseous circumstellar disk that is responsible for the observed IR-excess and emission lines. The influence of binarity on these phenomena remains controversial. delta Sco is a binary system whose primary suddently began to exhibit the Be phenomenon at the last periastron in 2000. We want to constrain the geometry and kinematics of its circumstellar environment. We observed the star between 2007 and 2010 using spectrally-resolved interferometry with the VLTI/AMBER and CHARA/VEGA instruments. We found orbital elements that are compatible with previous estimates. The next periastron should take place around July 5, 2011 (+- 4,days). We resolved the circumstellar disk in the HAlpha (FWHM = 4.8+-1.5mas), BrGamma (FWHM = 2.9 0.,mas), and the 2.06$ mu$m HeI (FWHM = 2.4+-0.3mas) lines as well as in the K band continuum (FWHM ~2.4mas). The disk kinematics are dominated by the rotation, with a disk expansion velocity on the order of 0.2km/s. The rotation law within the disk is compatible with Keplerian rotation. As the star probably rotates at about 70% of its critical velocity the ejection of matter doesnt seems to be dominated by rotation. However, the disk geometry and kinematics are similar to that of the previously studied quasi-critically rotating Be stars, namely Alpha Ara, Psi Per and 48 Per.



قيم البحث

اقرأ أيضاً

153 - Anthony Meilland 2013
Classical Be stars are hot non-supergiant stars surrounded by a gaseous circumstellar disk that is responsible for the observed infrared (IR) excess and emission lines. The influence of binarity on these phenomena remains controversial. We followed t he evolution of the environment surrounding the binary Be star $delta$ Scorpii one year before and one year after the 2011 periastron to check for any evidence of a strong interaction between its companion and the primary circumstellar disk. We used the VLTI/AMBER spectro-interferometric instrument operating in the K band in high (12000) spectral resolution to obtain information on both the disk geometry and kinematics. Observations were carried out in two emission lines: Br$gamma$ (2.172,$mu$m) and $ion{He}{i}$ (2.056,$mu$m). We detected some important changes in $delta$ Scorpiis circumstellar disk geometry between the first observation made in April 2010 and the new observation made in June 2012. During the last two years the disk has grown at a mean velocity of 0.2,km,s$^{-1}$. This is compatible with the expansion velocity previously found during the 2001-2007 period. The disk was also found to be asymmetric at both epochs, but with a different morphology in 2010 and 2012. Considering the available spectroscopic data showing that the main changes in the emission-line profiles occurred quickly during the periastron, it is probable that the differences between the 2010 and 2012 disk geometry seen in our interferometric data stem from a disk perturbation caused by the companion tidal effects. However, taking into account that no significant changes have occurred in the disk since the end of the 2011 observing season, it is difficult to understand how this induced inhomogeneity has been frozen in the disk for such a long period.
We describe the results of the world-wide observing campaign of the highly eccentric Be binary system delta Scorpii 2011 periastron passage which involved professional and amateur astronomers. Our spectroscopic observations provided a precise measure ment of the system orbital period at 10.8092+/- 0.0005 years. Fitting of the He II 4686A line radial velocity curve determined the periastron passage time on 2011 July 3, UT 9:20 with a 0.9--day uncertainty. Both these results are in a very good agreement with recent findings from interferometry. We also derived new evolutionary masses of the binary components (13 and 8.2 Msun) and a new distance of 136 pc from the Sun, consistent with the HIPPARCOS parallax. The radial velocity and profile variations observed in the H_alpha line near the 2011 periastron reflected the interaction of the secondary component and the circumstellar disk around the primary component. Using these data, we estimated a disk radius of 150 Rsun. Our analysis of the radial velocity variations measured during the periastron passage time in 2000 and 2011 along with those measured during the 20th century, the high eccentricity of the system, and the presence of a bow shock-like structure around it suggest that delta Sco might be a runaway triple system. The third component should be external to the known binary and move on an elliptical orbit that is tilted by at least 40 degree with respect to the binary orbital plane for such a system to be stable and responsible for the observed long-term radial velocity variations.
The rapidly rotating Be star phi Persei was spun up by mass and angular momentum transfer from a now stripped-down, hot subdwarf companion. Here we present the first high angular resolution images of phi Persei made possible by new capabilities in lo ngbaseline interferometry at near-IR and visible wavelengths. We observed phi Persei with the MIRC and VEGA instruments of the CHARA Array. Additional MIRC-only observations were performed to track the orbital motion of the companion, and these were fit together with new and existing radial velocity measurements of both stars to derive the complete orbital elements and distance. The hot subdwarf companion is clearly detected in the near-IR data at each epoch of observation with a flux contribution of 1.5% in the H band, and restricted fits indicate that its flux contribution rises to 3.3% in the visible. A new binary orbital solution is determined by combining the astrometric and radial velocity measurements. The derived stellar masses are 9.6+-0.3Msol and 1.2+-0.2Msol for the Be primary and subdwarf secondary, respectively. The inferred distance (186 +- 3 pc), kinematical properties, and evolutionary state are consistent with membership of phi Persei in the alpha Per cluster. From the cluster age we deduce significant constraints on the initial masses and evolutionary mass transfer processes that transformed the phi Persei binary system. The interferometric data place strong constraints on the Be disk elongation, orientation, and kinematics, and the disk angular momentum vector is coaligned with and has the same sense of rotation as the orbital angular momentum vector. The VEGA visible continuum data indicate an elongated shape for the Be star itself, due to the combined effects of rapid rotation, partial obscuration of the photosphere by the circumstellar disk, and flux from the bright inner disk.
161 - O. Chesneau , A. Kaufer , O. Stahl 2014
We present a spatially resolved, high-spectral resolution (R=12000) K-band temporal monitoring of Rigel using AMBER at the VLTI. Rigel was observed in the Bracket Gamma line and its nearby continuum in 2006-2007, and 2009-2010. These unprecedented ob servations were complemented by contemporaneous optical high-resolution spectroscopy. We analyse the near-IR spectra and visibilities with the 1D non-LTE radiative-transfer code CMFGEN. The differential and closure phase signal exhibit asymmetries that are interpreted as perturbations of the wind. A systematic visibility decrease is observed across the Bracket Gamma. During the 2006-2007 period the Bracket Gamma and likely the continuum forming regions were larger than in the 2009-2010 epoch. Using CMFGEN, we infer a mass-loss rate change of about 20% between the two epochs. We further find time variations in the differential visibilities and phases. The 2006-2007 period is characterized by noticeable variations of the differential visibilities in Doppler position and width and by weak variations in differential and closure phase. The 2009-2010 period is much more quiet with virtually no detectable variations in the dispersed visibilities but a strong S-shape signal is observed in differential phase coinciding with a strong ejection event discernible in the optical spectra. The differential phase signal that is sometimes detected is reminiscent of the signal computed from hydrodynamical models of corotating interaction regions. For some epochs the temporal evolution of the signal suggests the rotation of the circumstellar structures.
We present optical and NIR spectroscopic observations of U Sco 2010 outburst. From the analysis of lines profiles we identify a broad and a narrow component and show that the latter originates from the reforming accretion disk. We show that the accre tion resumes shortly after the outburst, on day +8, roughly when the super-soft (SSS) X-ray phase starts. Consequently U Sco SSS phase is fueled (in part or fully) by accretion and should not be used to estimate $m_{mathrm{rem}}$, the mass of accreted material which has not been ejected during the outburst. In addition, most of the He emission lines, and the HeII lies in particular, form in the accretion flow/disk within the binary and are optically thick, thus preventing an accurate abundance determination. A late spectrum taken in quiescence and during eclipse shows CaII H&K, the G-band and MgI b absorption from the secondary star. However, no other significant secondary star features have been observed at longer wavelengths and in the NIR band.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا