ترغب بنشر مسار تعليمي؟ اضغط هنا

Sparse spectral-tau method for the three-dimensional helically reduced wave equation on two-center domains

447   0   0.0 ( 0 )
 نشر من قبل Stephen R. Lau
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a multidomain spectral-tau method for solving the three-dimensional helically reduced wave equation on the type of two-center domain that arises when modeling compact binary objects in astrophysical applications. A global two-center domain may arise as the union of Cartesian blocks, cylindrical shells, and inner and outer spherical shells. For each such subdomain, our key objective is to realize certain (differential and multiplication) physical-space operators as matrices acting on the corresponding set of modal coefficients. We achieve sparse banded realizations through the integration preconditioning of Coutsias, Hagstrom, Hesthaven, and Torres. Since ours is the first three-dimensional multidomain implementation of the technique, we focus on the issue of convergence for the global solver, here the alternating Schwarz method accelerated by GMRES. Our methods may prove relevant for numerical solution of other mixed-type or elliptic problems, and in particular for the generation of initial data in general relativity.



قيم البحث

اقرأ أيضاً

We consider the 2+1 and 3+1 scalar wave equations reduced via a helical Killing field, respectively referred to as the 2-dimensional and 3-dimensional helically reduced wave equation (HRWE). The HRWE serves as the fundamental model for the mixed-type PDE arising in the periodic standing wave (PSW) approximation to binary inspiral. We present a method for solving the equation based on domain decomposition and spectral approximation. Beyond describing such a numerical method for solving strictly linear HRWE, we also present results for a nonlinear scalar model of binary inspiral. The PSW approximation has already been theoretically and numerically studied in the context of the post-Minkowskian gravitational field, with numerical simulations carried out via the eigenspectral method. Despite its name, the eigenspectral technique does feature a finite-difference component, and is lower-order accurate. We intend to apply the numerical method described here to the theoretically well-developed post-Minkowski PSW formalism with the twin goals of spectral accuracy and the coordinate flexibility afforded by global spectral interpolation.
We present an implementation of the Galerkin-Collocation method to determine the initial data for non-rotating distorted three dimensional black holes in the inversion and puncture schemes. The numerical method combines the key features of the Galerk in and Collocation methods which produces accurate initial data. We evaluated the ADM mass of the initial data sets, and we have provided the angular structure of the gravitational wave distribution at the initial hypersurface by evaluating the scalar $Psi_4$ for asymptotic observers.
129 - Mengxu Liu , Biping Gong 2020
The gravitational wave (GW) has opened a new window to the universe beyond the electromagnetic spectrum. Since 2015, dozens of GW events have been caught by the ground-based GW detectors through laser interferometry. However, all the ground-based det ectors are L-shaped Michelson interferometers, with very limited directional response to GW. Here we propose a three-dimensional (3-D) laser interferometer detector in the shape of a regular triangular pyramid, which has more spherically symmetric antenna pattern. Moreover, the new configuration corresponds to much stronger constraints on parameters of GW sources, and is capable of constructing null-streams to get rid of the signal-like noise events. A 3-D detector of kilometer scale of such kind would shed new light on the joint search of GW and electromagnetic emission.
78 - S.H. Challa , S. Dong , L.D. Zhu 2018
We present a hybrid spectral element-Fourier spectral method for solving the coupled system of Navier-Stokes and Cahn-Hilliard equations to simulate wall-bounded two-phase flows in a three-dimensional domain which is homogeneous in at least one direc tion. Fourier spectral expansions are employed along the homogeneous direction and $C^0$ high-order spectral element expansions are employed in the other directions. A critical component of the method is a strategy we developed in a previous work for dealing with the variable density/viscosity of the two-phase mixture, which makes the efficient use of Fourier expansions in the current work possible for two-phase flows with different densities and viscosities for the two fluids. The attractive feature of the presented method lies in that the two-phase computations in the three-dimensional space are transformed into a set of de-coupled two-dimensional computations in the planes of the non-homogeneous directions. The overall scheme consists of solving a set of de-coupled two-dimensional equations for the flow and phase-field variables in these planes. The linear algebraic systems for these two-dimensional equations have constant coefficient matrices that need to be computed only once and can be pre-computed. We present ample numerical simulations for different cases to demonstrate the accuracy and capability of the presented method in simulating the class of two-phase problems involving solid walls and moving contact lines.
In this paper, we give a direct method to study the isochronous centers on center manifolds of three dimensional polynomial differential systems. Firstly, the isochronous constants of the three dimensional system are defined and its recursive formula s are given. The conditions of the isochronous center are determined by the computation of isochronous constants in which it doesnt need compute center manifolds of three dimensional systems. Then the isochronous center conditions of two specific systems are discussed as the applications of our method. The method is an extension and development of the formal series method for the fine focus of planar differential systems and also readily done with using computer algebra system such as Mathematica or Maple.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا