ﻻ يوجد ملخص باللغة العربية
It is shown that the generalized Riemann equation is equivalent with the multicomponent generalization of the Hunter - Saxton equation. New matrix and scalar Lax representation is presented for this generalization. New class of the conserved densities, which depends explicitly on the time are obtained directly from the Lax operator. The algorithm, which allows us to generate a big class of the non-polynomial conservation laws of the generalized Riemann equation is presented. Due to this new series of conservation laws of the Hunter-Saxton equation is obtained.
Starting from positive and negative helicity Maxwell equations expressed in Riemann-Silberstein vectors, we derive the ten usual and ten additional Poincar{e} invariants, the latter being related to the electromagnetic spin, i.e., the intrinsic rotat
This note is designed to show some classes of differential-difference equations admitting Lax representation which generalize evolutionary equations known in the literature.
We present direct methods and symbolic software for the computation of conservation laws of nonlinear partial differential equations (PDEs) and differential-difference equations (DDEs).The methods are applied to nonlinear PDEs in (1+1) dimensions wit
We consider two infinite classes of ordinary difference equations admitting Lax pair representation. Discrete equations in these classes are parameterized by two integers $kgeq 0$ and $sgeq k+1$. We describe the first integrals for these two classes
We study the Veronese web equation $u_y u_{tx}+ lambda u_xu_{ty} - (lambda+1)u_tu_{xy} =0$ and using its isospectral Lax pair construct two infinite series of nonlocal conservation laws. In the infinite differential coverings associated to these seri