ﻻ يوجد ملخص باللغة العربية
A 0+1-dimensional candidate theory for the CFT$_1$ dual to AdS$_2$ is discussed. The quantum mechanical system does not have a ground state that is invariant under the three generators of the conformal group. Nevertheless, we show that there are operators in the theory that are not primary, but whose non-primary character conspires with the non-invariance of the vacuum to give precisely the correlation functions in a conformally invariant theory.
We aim at formulating a higher-spin gravity theory around AdS$_2$ relevant for holography. As a first step, we investigate its kinematics by identifying the low-dimensional cousins of the standard higher-dimensional structures in higher-spin gravity
We analyze quantum fluctuations around black hole solutions to the Jackiw-Teitelboim model. We use harmonic analysis on Euclidean AdS$_2$ to show that the logarithmic corrections to the partition function are determined entirely by quadratic holomorp
We continue to develop the holographic interpretation of classical conformal blocks in terms of particles propagating in an asymptotically $AdS_3$ geometry. We study $n$-point block with two heavy and $n-2$ light fields. Using the worldline approach
Field theories in black hole spacetimes undergo dimensional reduction near horizon (in the Rindler limit) to two dimensional conformal field theories. We investigate this enhancement of symmetries in the context of gauge/gravity duality by considerin
The 1/2-BPS Wilson loop in $mathcal{N}=4$ supersymmetric Yang-Mills theory is an important and well-studied example of conformal defect. In particular, much work has been done for the correlation functions of operator insertions on the Wilson loop in