ﻻ يوجد ملخص باللغة العربية
We settle the Path Decomposition Conjecture (P.D.C.) due to Tibor Gallai for minimally connected graphs, i.e. trees. We use this validity for trees and settle the P. D. C. using induction on the number of edges for all connected graphs. We then obtain a new bound for the number of paths in a path cover in terms of the number of edges using idea of associating a tree with a connected graph. We then make use of a spanning tree in the given connected graph and its associated basic path cover to settle the conjecture of Tibor Gallai in an alternative way. Finally, we show the existence of Hamiltonian path cover satisfying Gallai bound for complete graphs of even order and discuss some of its possible ramifications.
We propose an algorithm to reduce a k-chromatic graph to a complete graph of largest possible order through a well defined sequence of contractions. We introduce a new matrix called transparency matrix and state its properties. We then define correct
We show that we cannot avoid the existence of at least one directed circuit of length less than or equal to (n/r) in a digraph on n vertices with out-degree greater than or equal to r. This is well-known Caccetta-Haggkvist problem.
Lothar Collatz had proposed in 1937 a conjecture in number theory called Collatz conjecture. Till today there is no evidence of proving or disproving the conjecture. In this paper, we propose an algorithmic approach for verification of the Collatz co
Let $lambda(m)$ be the $m$th coefficient of a modular form $f(z)=sum_{mgeq 1} lambda(m)q^m$ of weight $kgeq 4$, let $p^n$ be a prime power, and let $varepsilon>0$ be a small number. An approximate of the Atkin-Serre conjecture on the lower bound of t
We present in this work a heuristic expression for the density of prime numbers. Our expression leads to results which possesses approximately the same precision of the Riemanns function in the domain that goes from 2 to 1010 at least. Instead of usi