ترغب بنشر مسار تعليمي؟ اضغط هنا

Ferromagnetic and antiferromagnetic dimer splittings in LaMn0.1Ga0.9O3

43   0   0.0 ( 0 )
 نشر من قبل Albert Furrer
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Inelastic neutron scattering was employed to study the magnetic excitations of Mn3+ dimers in LaMn0.1Ga0.9O3. The nearest-neighbor interaction of Mn3+ ions is ferromagnetic in the basal (a,b)-plane, but antiferromagnetic along the c-direction, thus two different types of dimer excitations are simultaneously present in the experiments. From the observed energy spectra we derive Heisenberg-type exchange interactions Jab=0.210(4) meV and Jc=-0.285(5) meV as well as an axial anisotropy parameter D=0.036(6) meV. These parameters considerably differ from those derived for the isostructural parent compound LaMnO3 due to structural effects.

قيم البحث

اقرأ أيضاً

Low-temperature specific heat of CaRu1-xMnxO3 was measured to clarify the role of d electrons in ferromagnetic and antiferromagnetic orders observed above x=0.2. Specific heat divided by temperature C_p/T is found to roughly follow a T^2 function, an d relatively large magnitudes of electronic specific heat coefficient gamma were obtained in wide x range. In particular, gamma is unchanged from the value at x=0 (84 mJ/K^2 mol) in the paramagnetic state for x<=0.1, but linearly reduced with increasing x above x= 0.2. These features of gamma strongly suggest that itinerant d electrons are tightly coupled with the evolution of magnetic orders in small and intermediate Mn concentrations.
Low-temperature electronic states in SrRu_{1-x}Mn_xO_3 for x <= 0.6 have been investigated by means of specific-heat C_p measurements. We have found that a jump anomaly observed in C_p at the ferromagnetic (FM) transition temperature for SrRuO_3 chan ges into a broad peak by only 5% substitution of Mn for Ru. With further doping Mn, the low-temperature electronic specific-heat coefficient gamma is markedly reduced from the value at x=0 (33 mJ/K^2 mol), in connection with the suppression of the FM phase as well as the enhancement of the resistivity. For x >= 0.4, gamma approaches to ~ 5 mJ/K^2 mol or less, where the antiferromagnetic order with an insulating feature in resistivity is generated. We suggest from these results that both disorder and reconstruction of the electronic states induced by doping Mn are coupled with the magnetic ground states and transport properties.
We use inelastic neutron scattering to study energy and wave vector dependence of spin fluctuations in SrCo$_2$As$_2$, derived from SrFe$_{2-x}$Co$_x$As$_2$ iron pnictide superconductors. Our data reveals the coexistence of antiferromagnetic (AF) and ferromagnetic (FM) spin fluctuations at wave vectors $textbf{Q}_{rm AF}$=(1,0) and $textbf{Q}_{rm FM}$=(0,0)/(2,0), respectively. By comparing neutron scattering results with those of dynamic mean field theory calculation and angle-resolved photoemission spectroscopy experiments, we conclude that both AF and FM spin fluctuations in SrCo$_2$As$_2$ are closely associated with a flat band of the $e_g$ orbitals near the Fermi level, different from the $t_{2g}$ orbitals in superconducting SrFe$_{2-x}$Co$_x$As$_2$. Therefore, Co-substitution in SrFe$_{2-x}$Co$_x$As$_2$ induces a $t_{2g}$ to $e_g$ orbital switching, and is responsible for FM spin fluctuations detrimental to the singlet pairing superconductivity.
Dynamics of S=1 antiferromagnetic bond-alternating chains in the dimer phase, in the vicinity of the critical point with the Haldane phase, is studied by a field theoretical method. This model is considered to represent the compound Ni(C$_9$H$_{24}$N $_4$)(NO$_2$)ClO$_4$ (abbreviated as NTENP). We construct the sine-Gordon (SG) field theory as a low-energy effective model of this system, starting from a Tomonaga-Luttinger liquid at the critical point. Using the exact solution of the SG theory, we give a field theoretical picture of the low-energy excitation spectrum of NTENP. Results derived from our picture are in a good agreement with results of inelastic neutron scattering experiments on NTENP and numerical calculation of the dynamical structure factor. Furthermore, on the basis of the obtained theoretical picture, we predict that the sharp peaks correspond to a single elementary excitation are absent in the Raman scattering spectrum of NTENP in contrast to the inelastic neutron scattering spectrum.
The Kitaev model is a rare example of an analytically solvable and physically instantiable Hamiltonian yielding a topological quantum spin liquid ground state. Here we report signatures of Kitaev spin liquid physics in the honeycomb magnet $Li_3Co_2S bO_6$, built of high-spin $it{d^7}$ ($Co^{2+}$) ions, in contrast to the more typical low-spin $it{d^5}$ electron configurations in the presence of large spin-orbit coupling. Neutron powder diffraction measurements, heat capacity, and magnetization studies support the development of a long-range antiferromagnetic order space group of $it{C_C}2/it{m}$, below $it{T_N}$ = 11 K at $it{mu_0H}$ = 0 T. The magnetic entropy recovered between $it{T}$ = 2 K and 50 K is estimated to be 0.6Rln2, in good agreement with the value expected for systems close to a Kitaev quantum spin liquid state. The temperature-dependent magnetic order parameter demonstrates a $beta$ value of 0.19(3), consistent with XY anisotropy and in-plane ordering, with Ising-like interactions between layers. Further, we observe a spin-flop driven crossover to ferromagnetic order with space group of $it{C}2/it{m}$ under an applied magnetic field of $it{mu_0H}$ $approx$ 0.7 T at $it{T}$ = 2 K. Magnetic structure analysis demonstrates these magnetic states are competing at finite applied magnetic fields even below the spin-flop transition. Both the $it{d^7}$ compass model, a quantitative comparison of the specific heat of $Li_3Co_2SbO_6$, and related honeycomb cobaltates to the anisotropic Kitaev model further support proximity to a Kitaev spin liquid state. This material demonstrates the rich playground of high-spin $it{d^7}$ systems for spin liquid candidates, and complements known $it{d^5}$ Ir- and Ru-based materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا