ﻻ يوجد ملخص باللغة العربية
Recent observations show that inner discs and rings (IDs and IRs, henceforth) are not preferably found in barred galaxies, a fact that points to the relevance of formation mechanisms different to the traditional bar-origin scenario. In contrast, the role of minor mergers in the formation of these inner components (ICs), while often invoked, is still poorly understood. We have investigated the capability of minor mergers to trigger the formation of IDs and IRs in spiral galaxies through collisionless N-body simulations. We have run a battery of minor mergers in which both primary and secondary are modelled as disc-bulge-halo galaxies with realistic density ratios. A detailed analysis of the morphology, structure, and kinematics of the ICs resulting from the minor merger has been carried out. All the simulated minor mergers develop thin ICs out of satellite material, supported by rotation. A wide morphological zoo of ICs has been obtained (including IDs, IRs, pseudo-rings, nested IDs, spiral patterns, and combinations of them), but all with structural and kinematical properties similar to observations. The existence of the resulting ICs can be deduced through the features that they imprint in the isophotal profiles and kinemetric maps of the final remnant, as in many real galaxies. The realistic density ratios used in the present models make the satellites to experience more efficient orbital circularization and disruption than in previous studies. Combined with the disc resonances induced by the encounter, these processes give place to highly aligned co- and counter-rotating ICs in the remnant centre. Therefore, minor mergers are an efficient mechanism to form rotationally-supported stellar ICs in spiral galaxies, neither requiring strong dissipation nor the development of noticeable bars (abridged).
Minor merger of galaxies are common during the evolutionary phase of galaxies. Here, we investigate the dynamical impact of a minor merger (mass ratio 1:10) event on the final fate of a stellar bar in the merger remnant. To achieve that, we choose a
We study the effect of dissipational gas physics on the vertical heating and thickening of disc galaxies during minor mergers. We produce a suite of minor merger simulations for Milky Way-like galaxies. This suite consists of collisionless simulation
We analyse a high-resolution, fully cosmological, hydrodynamical disc galaxy simulation, to study the source of the double-exponential light profiles seen in many stellar discs, and the effects of stellar radial migration upon the spatio-temporal evo
We present an analysis of the structures and dynamics of the merging cluster Abell~1201, which has two sloshing cold fronts around a cooling core, and an offset gas core approximately 500kpc northwest of the center. New Chandra and XMM-Newton data re
An $m=1$ lopsided asymmetry is common in disc galaxies. Here, we investigate the excitation of an $m=1$ lopsidedness in host galaxies during minor mergers (mass ratio 1:10) while choosing a set of minor merger models (with varying orbital configurati